
AFIT/GCS/ENG/04-09

COMPARATIVE ANALYSIS OF ACTIVE AND PASSIVE MAPPING

TECHNIQUES IN AN INTERNET-BASED LOCAL AREA NETWORK

THESIS
James B. Kuntzelman

Master Sergeant, USAF

AFIT/GCS/ENG/04-09

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCS/ENG/04-09

COMPARATIVE ANALYSIS OF ACTIVE AND PASSIVE
MAPPING TECHNIQUES IN AN INTERNET-BASED LOCAL

AREA NETWORK

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

James B. Kuntzelman, B.S.C.S.

Master Sergeant, USAF

March, 2004

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/04-09

COMPARATIVE ANALYSIS OF ACTIVE AND PASSIVE
MAPPING TECHNIQUES IN AN INTERNET-BASED LOCAL

AREA NETWORK

THESIS

James B. Kuntzelman, B.S.C.S.

Master Sergeant, USAF

Approved:

/signed/ 10 Mar 2004

Dr. Richard A. Raines
Thesis Advisor

Date

/signed/ 10 Mar 2004

Maj. Rusty O. Baldwin, PhD
Committee Member

Date

/signed/ 10 Mar 2004

Dr. Gilbert L. Peterson
Committee Member

Date

Acknowledgements

I would like to express my sincere appreciation to my thesis advisor, Dr. Rick

Raines, for his guidance and support throughout the course of this thesis effort. Your

continually asking “why?” and “so what?” were pointed ways to help me keep on

track. See? I can turn it in on-time. Also, Major Rusty Baldwin, thesis committee

member, the performance analysis expert and all-around good guy–the insight and

experience was certainly appreciated.

To Capt Eugene Turnbaugh, thanks for the statistical spreadsheet to

get me thinking in the right direction. To Capt Danny Bias, thanks for the TCP

client/server software, Java style. Thanks to 2Lt Zachary Gray and 1Lt Mark Klee-

man for nurse-maiding me through the LATEX learning experience. Thanks to Donald

Knuth and Leslie Lamport for creating TEX and LATEX respectively, without which,

this thesis would have been really difficult to manage. Thanks also to Capt Josh

Green for his friendship throughout this ordeal. Thanks for sharing.

To my fellow GCE/GCS-04M classmates: We came, we saw, we whined

a bit, and then we conquered. A special thanks to my fellow first-time enlisted

students. Don’t forget, we’re all special! In a related thanks, I’d like to thank SMSgt

Hobson for opening the door to enlisted personnel at AFIT. Timing is everything!

A very special thanks to SMSgt Stephanie Carroll, who dragged me kick-

ing and screaming through the Dark Times (aka, STAT583.)

Finally, and obviously most importantly, I would like to thank my wife

and children for putting up with me, lo, these many years.

James B. Kuntzelman

iv

Table of Contents
Page

Acknowledgements . iv

List of Figures . viii

List of Tables . ix

Abstract . x

1. Introduction . 1
1.1 Background . 1

1.2 Research Problem . 2
1.3 Scope . 2

1.4 Approach . 2

1.5 Summary . 3

2. Background / Literature Review 4

2.1 Introduction . 4
2.2 Description . 4

2.3 Definition of Network Mapping and Network Maps . . 5

2.4 Why Network Mapping? 6

2.5 Active Network Mapping Techniques 7

2.6 Strengths and Weaknesses of Active Mapping 15

2.7 Passive Network Mapping Techniques 18

2.8 Stumbling Blocks . 21

2.9 Relevant Research . 23
2.10 Summary . 25

3. Methology . 26

3.1 Introduction . 26
3.2 Active Mapping . 26

3.3 Specification of a Passive Mapping System 26

3.3.1 Functional Requirements 27

3.3.2 Non-Functional Requirements 28

3.3.3 Code Exploration 28

3.4 Design of a Passive Mapping System 29

3.5 Design Of The Test Environment 32

v

Page

3.5.1 Traffic Generators 33
3.5.2 honeyd . 35

3.5.3 syntraf . 36

3.5.4 Verification of Code Operation 37

3.6 Design Of Experiments 40

3.6.1 Approach . 40

3.6.2 System Boundaries 40

3.6.3 System Services 40

3.6.4 Performance Metrics 40
3.6.5 System Parameters 43

3.6.6 Workload Parameters 44
3.7 Factors . 46

3.7.1 System Factors 46

3.7.2 Workload Factors 47
3.8 Evaluation Technique 47

3.8.1 Systems Environment 47

3.8.2 Software Environment 48
3.8.3 Test System Interaction 50

3.9 Experimental Execution 52

3.10 Summary . 52

4. Analysis . 54

4.1 Introduction . 54
4.2 Collection of Data and Analysis of Variance 54

4.2.1 Eliminating Traffic Pattern Factor 55

4.2.2 Examining Factor Effects on Metrics 56

4.2.3 Examining the Derivative Metrics 58

4.3 Comparison of Accuracy Metrics 59

4.3.1 Overall Accuracy 59

4.3.2 Accuracy over Time 61

4.4 Comparison of Efficiency Metrics 61

4.4.1 Overall Efficiency 61

4.4.2 Efficiency over Time 62

4.5 Summary . 62

4.6 Limitations . 63
4.6.1 UDP . 63
4.6.2 syntraf . 64

4.6.3 Number of SPAN Sessions 65
4.6.4 nmap . 65

vi

Page

4.6.5 Real Systems 66

4.7 Summary . 67

5. Conclusions . 68
5.1 Research Contribution 68
5.2 Performance of the Mapping Methods 68

5.3 Conclusions . 69
5.4 Future Research . 70

5.4.1 lanmap and collector 70

5.4.2 Flow- versus Sniffer-Based System 70

5.4.3 syntraf . 70

5.4.4 Network Loading 71

5.4.5 ARP Poisoning 71

5.4.6 Combining Active and Passive Techniques . . 71

Appendix A. Gathered Data . 72

Appendix B. Data Analysis Charts 78

B.1 Traffic Pattern Analysis 78

B.2 Effects Tests for Response Variables 79

B.3 Effects Tests for Derived Metrics 80
B.4 Comparison by Method at Time=40 81

Appendix C. Source Code and Configuration Files 83

C.1 Source Code . 84
C.1.1 uncollect.pl 84

C.1.2 ungrep.pl . 85

C.1.3 matchem.java 85

C.1.4 syntraf . 85

C.1.5 lanmap and collector 86

C.1.6 nmap modifications 86

C.2 Configuration Files . 86

C.2.1 honeyd configuration 86

C.2.2 syntraf configuration 86

C.3 Experiment System . 86

Appendix D. Availability of Source Code and Configuration Files . . 87

Bibliography . 88

vii

List of Figures
Figure Page

2.1. nmap execution [56] . 13

2.2. snmpwalk execution [38] . 14

3.1. lanmap algorithm . 31

3.2. collector algorithm . 33

3.3. syntraf System Block Diagram 38

3.4. Mapping System Block Diagram 40

3.5. matchem algorithm . 42

3.6. Hardware Environment . 49
3.7. Active Test System Configuration 51

3.8. Passive Test System Configuration 52

4.1. Overall Analysis of Variance of the Effects for “Total Discoveries” 55

4.2. Discoveries over Time (higher is better) 62

4.3. Network Overhead over Time (lower is better) 63

C.1. Experiment System Configuration 86

viii

List of Tables
Table Page

3.1. Performance Metrics . 41
3.2. Derived Performance Metrics 43
3.3. System Parameters . 45

3.4. Workload Parameters . 45
3.5. System Factors . 46

3.6. Workload Factors . 47
3.7. Hardware Environment Specifications 48

3.8. Major Software Components 49

4.1. 95% CI on Server Discoveries by Log Traffic Pattern 56

4.2. Effects Test for Log Client Discoveries (α = 0.05) 56

4.3. Effects Test for Log Server Discoveries (α = 0.05) 57

4.4. Effects Test for Log Packets In (α = 0.05) 58

4.5. Effects Test for Log Total Discoveries (α = 0.05) 59

4.6. 95% CI on Log Server Discoveries by Method (Time=40) . . 60

4.7. 95% CI on Log Client Discoveries by Method (Time=40) . . 61

4.8. 95% CI on Log Total Discoveries by Method (Time=40) . . . 61

4.9. 95% CI on Total Network Overhead (Log # Packets) 62

B.1. 95% CI on Log Client Discoveries by Traffic Pattern 78

B.2. 95% CI on Log Server Discoveries by Traffic Pattern 78

B.3. 95% CI on Log Packets In by Traffic Pattern 78

B.4. 95% CI on Log Packets Out by Traffic Pattern 79

B.5. Effects Test for Log Client Discoveries (α = 0.05) 79

B.6. Effects Test for Log Server Discoveries (α = 0.05) 79

B.7. Effects Test for Log Packets In (α = 0.05) 80

B.8. Effects Test for Log Packets Out (α = 0.05) 80

B.9. Effects Test for Log Total Discoveries (α = 0.05) 80

B.10. Effects Test for Log Overhead Packets In (α = 0.05) 81

B.11. Effects Test for Log Total Network Overhead (α = 0.05) . . . 81

B.12. 95% CI on Log Server Discoveries by Method (Time=40) . . 81

B.13. 95% CI on Log Client Discoveries by Method (Time=40) . . 81

B.14. 95% CI on Log Total Discoveries by Method (Time=40) . . . 82

B.15. 95% CI on Log Overhead Packets In by Method (Time=40) . 82

B.16. 95% CI on Log Overhead Packets Out by Method (Time=40) 82

B.17. 95% CI on Log Total Network Overhead by Method (Time=40) 82

ix

AFIT/GCS/ENG/04-09

Abstract

Network mapping technologies allow quick and easy discovery of computer systems

throughout a network. Active mapping methods, such as using nmap, capitalize on the

standard stimulus-response of network systems to probe target systems. In doing so, they

create extra traffic on the network, both for the initial probe and for the target system’s

response. Passive mapping methods work opportunistically, listening for network traffic as

it transits the system. As such, passive methods generate minimal network traffic overhead.

Active methods are still standard methods for network information gathering; passive

techniques are not normally used due to the possibility of missing important information

as it passes by the sensor. Configuring the network for passive network mapping also

involves more network management.

This research explores the implementation of a prototype passive network mapping

system, lanmap, designed for use within an Internet Protocol-based local area network.

Network traffic is generated by a synthetic traffic generation suite using honeyd and syntraf,

a custom Java program to interact with honeyd. lanmap is tested against nmap to compare

the two techniques.

Experimental results show that lanmap is quite effective, discovering an average of

76.1% of all configured services (server- and client-side) whereas nmap only found 27.6%

of all configured services. Conversely, lanmap discovered 19.9% of the server services while

nmap discovered 92.7% of the configured server-side services. lanmap discovered 100% of

all client-side service consumers while nmap found none. lanmap generated an average

of 200 packets of network overhead while nmap generated a minimum of minimum 8,600

packets on average–up to 155,000 packets at its maximum average value.

The results show that given the constraints of the test bed, passive network mapping

is a viable alternative to active network mapping, unless the mapper is looking for unused

server-side services.

x

COMPARATIVE ANALYSIS OF ACTIVE AND PASSIVE

MAPPING TECHNIQUES IN AN INTERNET-BASED LOCAL

AREA NETWORK

1. Introduction

With the ever increasing requirements placed on network administrators due

to mission needs and the reliance on networks and network-based systems, network

and network security administrators cannot afford to be ignorant of the systems

connected to their networks. It is paramount they maintain a comprehensive view

of their areas of responsibility. One technique available to them is network mapping.

Network mapping is a discovery process enumerating network devices and the services

provided by those systems. With this information, a network administrator can

determine if there have been significant changes to the network and take action to

resolve discrepancies.

1.1 Background

There are two basic types of network mapping, active and passive. Active

methods rely on a stimulus-response from network systems. The active mapper

sends special probes to target systems and awaits an expected response and builds

a map based on those responses (or lack thereof). A passive mapper simply listens

to traffic on the network and builds a map based on the normal interaction of client

and server systems in the network.

Active network mapping creates network overhead by sending probes to target

systems which further elicit a response. Passive methods rely solely on the traffic

already on the network and introduce little, if any, overhead onto the network.

1

1.2 Research Problem

This research compares these two techniques and performs a side-by-side com-

parison to determine which is more accurate and which has less network overhead.

This research explores both techniques, using a freely available, “off-the-shelf” pro-

gram representative of the active mapping technique. A passive technology is rep-

resented by a custom system that includes a network sensor and a data collector

to provide the mapping to a user. Both approaches are compared in a simulated

network environment and quantified results to the comparison question generated.

1.3 Scope

The scope of this research is limited to examining the results of active and

passive network mapping systems. nmap is selected as the active mapping tool due

to its overwhelming popularity and its widespread use. Since no passive mapping

system is easily available that meets the needs of this research, a custom system is

constructed.

Both systems are presented with identical networks on which to perform their

mapping function. Results of the mapping are compared statistically using accuracy

and efficiency as metrics. Accuracy metrics capture the correctness and complete-

ness of the mapping. Efficiency metrics describe the amount of network overhead

generated by the different techniques.

1.4 Approach

This investigation uses empirical results of real systems in operation. Using

freely available software and standard desktop computer systems, an experimental

test bed is built. This test bed provides facilities for both the active and passive

mapping system to perform their task in a realistic yet controlled environment. The

custom passive mapping system is developed using freely available components and

libraries. A client-server network environment is constructed, complete with network

2

traffic for the passive mapper to examine and the active mapper to contend with.

Finally, trials are run using various configurations and time frames to gather metrics

used for comparison.

The network is based on honeyd, an open-source honeypot program, to provide

virtual machines for the server-side environment and a custom traffic generator to

interact with those servers.

1.5 Summary

The remainder of this document is organized into four chapters. Chapter 2 con-

tains the literature review where background associated with the Internet Protocol

(IP) and mapping methods are discussed. The methodology for the experimental

phase of this investigation is given in Chapter 3. The analysis of the results and

comparison between active and passive techniques follow in Chapter 4. Finally,

Chapter 5 provides a summary of the thesis effort and identifies areas of the research

to be explored in future research efforts.

3

2. Background / Literature Review

2.1 Introduction

This chapter provides an overview to network mapping techniques. Section 2.2

describes network mapping in general. Section 2.3 provides definitions of terms as

they apply to this research and Section 2.4 discusses reasons for and the uses of net-

work mapping. Section 2.5 describes active mapping techniques in common use while

Section 2.6 reveals advantages and disadvantages of those techniques. Section 2.7 de-

scribes some passive methods and Section 2.8 defines drawbacks of passive methods.

Finally, Section 2.9 discusses other research in these and related areas.

2.2 Description

With the massive growth of and dependence on computer networks and the

Internet for e-commerce and mission-critical command-and-control messaging, those

same computer networks have greatly increased in capabilities to accommodate in-

creased network traffic. This increased need has led to higher levels of complexity

as these networks and network systems have spread and grown over time. Thus,

management and control of the enterprise network has also become quite complex.

Network mapping techniques give network managers and network security personnel

the capability to know, discover and understand their network topology, the services

that their systems provide, and the location and types of consumers of those services.

There are a number of mapping techniques currently being used in production en-

vironments such as Hewlett-Packard’s OpenView (HPOV) Network Node Manager

(NNM) [31] and Ipswitch’s WhatsUp Gold [13], all of which are stimulus-response

or active systems. Passive mapping methods are not being widely used in produc-

tion networks. This chapter discusses the importance of network mapping, currently

used and proposed methods and techniques, the success expectancy and potential

limitations hindering implementation.

4

2.3 Definition of Network Mapping and Network Maps

To alleviate confusion, “network mapping” will be explicitly defined. According

to Merriam-Webster, a network is defined as “a system of computers, terminals, and

databases connected by communications lines” [9] whereas a mapping is defined as

(in this context) “to make a survey of for or as if for the purpose of making a

map” [9]. So, a definition of network mapping could be “a survey of a system of

computers, terminals, and databases for the purpose of making a map.” While this

definition is close to what is needed, the definition is modified to suit the purposes

of this investigation:

Network mapping is the information gathering process by which infor-
mation about a network is collected regarding its topology, its systems
and the services those systems provide.

Other related definitions are given to provide a fuller understanding of this

investigation. These definitions are:

Client : a computer program, which accesses a service and typically pro-
vides a user interface for that service.

System: any device which can load and execute programs.

Network System: the computers, networks, clients and servers which
encompass the actions, tasks, and programs to be executed.

Server : a system which provides services to clients.

Service: a computer program which provides a given information resource
to a client (i.e., e-mail service or web service).

Accuracy : a measure of the correctness of mapping decisions.

Efficiency : used to describe the network overhead the mapping algo-
rithm induces to perform its job. The fewer packets introduced into the
network, the more efficient the algorithm is.

Using these definitions, a “client system” is nothing more than a system which

loads a client program and uses it to access a service.

5

2.4 Why Network Mapping?

A network map provides simplified understanding of a complex system or net-

work of systems. The age-old cliché of “a picture is worth a thousand words” cer-

tainly applies here. Using spreadsheets or databases to track and represent network

system configurations simplifies the management of that information via automated

means. This type of information may mean little to the network manager must

understand the systems under his/her control. Therefore, if the information is re-

duced to its essence–that representative information the network manager needs to

understand–and represented it in a way which is easily grasped and readily under-

standable, a complex system is simplified.

Useful network maps have several properties in common. They are typically

pictorial in nature and provide an overview of the systems that comprise the net-

work. However, depending on the experience or working-level of the person using

it–technician or manager–the network map could be a simple list of network systems

and specific, critical attributes. Probably the most important piece of information

on a network map is the function of a given network device. A network map should

also disclose the system’s type without confusion. Most network mapping tools like

the aforementioned WhatsUp Gold and Network Node Manager represent the system

type with standardized pictures or icons. However, it is up to the network adminis-

trator to configure the visual portion of network maps appropriately for the type of

equipment.

Another important representation is the system location within the network.

The topology of enterprise networks is typically hierarchical in nature, with the pri-

mary service-providing systems on a few network segments (for redundancy and load

balancing) and the client workstations spread throughout other segments within the

enterprise. Other information is and will be available via the map, but these two

pieces of information are those that interest both network administrators and man-

agers. The network administrator needs to know what systems are doing on his/her

6

network (regarding interoperability, or the effect of new systems on the network as

a whole, etc). Managers want to keep track of how many systems are online and

their functions for inventory, cost, manpower levels, and budget planning for future

systems.

Network mapping also aids the network technician for remotely administered

networks. Managing networks remotely is a difficult task because of the lack of direct

supervision and physical control of those networks. However, remote administration

is becoming more and more popular by organizations that have a small cadre of

network and system savvy individuals and numerous enterprises to run. Indeed, that

is the thrust of the network consolidation effort going on throughout the Air Force–

consolidation of common services by the major commands [4,24]. Administrators of

these systems remotely manage and monitor critical systems at the Air Force bases

under their control. A standardized and accurate network map of the systems at

their remote sites provides administrators consistent information.

Finally, network maps and network mapping play a large role in the hacker

and information warfare community. Tools and techniques developed over time en-

able these individuals to quickly and easily perform reconnaissance on an adversary’s

network. This information gives the attacker a “footprint” of the topology of the

enemy’s network and knowledge of critical systems within that network. The tech-

niques and tools in-use are primarily active methods.

2.5 Active Network Mapping Techniques

Network mapping techniques fall into one of two broad categories: active and

passive. Active techniques involve a person or process who actively probes a net-

work to elicit information. Active techniques typically rely on stimulus-response–the

network or network system responds to a stimulus given by the network mapping

process. Passive techniques simply “listen in” and do not actively probe the network.

7

The simplest technique (and perhaps the most primitive method of active map-

ping) is a hands-on inventory of all systems connected to the network. While archaic

compared to the techniques discussed later, this still remains a viable option. In-

deed, Automated Data Processing Equipment (ADPE) custodians throughout the

Air Force must perform a hands-on inventory of their computer-related assets at

least once yearly, a tedious and often arduous task [25]. While performing this task,

the ADPE custodian, either with pen and paper or by automated process, collects

information to build a network map. In fact, this technique provides more informa-

tion than the automated methods listed below. The ADPE custodian is supposed

to provide physical and environmental attributes of a given system. Specific infor-

mation includes the system’s owner or primary user, and the location (building and

office) in which it is located. This is a daunting task, especially when users move

computers without the custodian’s knowledge. Simpler, more automated methods

are needed and luckily, are available.

Next on the complexity level would be a ping sweep. The ping command works

much like sonar–sending out a signal and waiting for the echo of that signal to return.

Using the Internet Control Message Protocol (ICMP) Echo function, ping sends a

single, serial-numbered packet to a given address [41]. If a host exists at that address,

it is supposed to reply, as required by the Internet Protocol (IP) standard, to the

originator using the same serial number [42]. The ping command gives the network

mapper one important piece of information: whether a system exists at a given IP

address. A ping sweep extends the ping model and uses a simple looping technique

to ping all of the addresses within a given IP address range. The sweep typically

encompasses an entire network. Ping sweeps are simple to implement because the

ping command is a common part of the IP protocol suite that exists on Internet

capable systems. A simple script can use the ping command, iterate through the

given addresses, and save the results in a log file for later perusal by an individual

or an automated system.

8

The primary drawback to this technique is that quite a few administrators

disable or block ICMP echo packets at their border gateways or even within their

metropolitan area networks (MANs) or LANs. As a result, this technique cannot be

used on those networks. Second, the system being probed must respond to the echo

request. The given system could simply be turned off, as is the case for workstations

which are routinely shutdown at the end of the workday. They could even be con-

figured not to answer the ping request. Finally, the ping sweep doesn’t reveal much

more information than “exists and answering.”

When used in a “local” network, one which the administrator has control, a

ping sweep is a fast and effective method of finding out which IP addresses within the

network are in use by hosts. The administrator is able to reach out and “touch” sys-

tems via the network without obstacles. When used against an adversary, however,

this becomes a tricky matter. As stated above, security-minded network adminis-

trators often block ICMP messages at the network border router or gateway firewall

to keep outsiders from gaining information about their network. Even if a system

does respond, it could be a false flag, or even a honeypot designed to draw attention

away from actual production network resources [50]. Results of a ping sweep against

an adversary should be used with a great deal of skepticism.

Another standard tool built upon the ICMP protocol is traceroute. traceroute

uses the Time-To-Live (TTL) field present in every IP packet. The TTL is simply a

network “hop” counter. Every device along a packet’s path automatically decrements

the packet’s TTL. When the counter reaches zero, the network device is supposed to

ignore or drop that packet and send an ICMP Time Exceeded message back to the

originator, giving it the chance to take further action with that packet [41, 42]. By

starting with a TTL of one, and incrementing one hop at a time, the traceroute utility

can send an IP packet destined for a target address and keep track of the systems

that report ICMP Time Exceeded for each “hop distance” [3]. Thus, traceroute can

be used to discover the topology of the network. By using the list of active hosts

9

generated by a ping sweep, the network mapper can discover the pathways between

various machines on the network. When using the traceroute command, a mapper

tracks nodes which are repeated when contacting different hosts and can determine

where primary nodes (i.e., routers) are throughout the network. Thus, the mapper

can build a hierarchical topology of systems and network devices which support those

systems.

Using traceroute in a LAN or MAN which a network manager has absolute

control over makes for quick discovery of those network devices and the routes in-

formation takes through the network. When used against an adversary, this method

works only as well as that adversary’s network administrator permits. Simply block-

ing the ICMP Time Exceeded from traversing out a network keeps traceroute from

working against the devices within the network. However, that same network trace

information can give a good picture of the interconnection of these systems and the

critical paths which the network needs to function.

Researchers at Lumeta Corp have devised an automated way to use traceroute

to generate map data and then create visualizations of the Internet from that data.

Termed “peacock maps,” their stunning visualizations have actually become quite

popular within the Internet community and are being sold on-line to enthusiasts and

art galleries alike [17].

Similar research is being conducted by the“skitter” project developed by the

Cooperative Association for Internet Data Analysis (CAIDA) [33]. This tool maps

the Internet using round-trip time calculations to over half a million Internet devices

around the world. It provides a picture of the topological connectivity of the Internet,

but doesn’t go the next step of discovering services. Granted, for the scale of their

project, gathering “services-provided” data for 500,000 hosts would be impractical,

at least on a frequent and recurring basis. Furthermore, this mapping technique

doesn’t “discover” new information about the network, simply the topology to known

10

machines [33]. Indeed, discovery of the millions of nodes throughout the entire

Internet would be a vast undertaking in and of itself.

Moving up the network stack to the transport layer, the Transmission Con-

trol Protocol (TCP) provides a standard method of end-to-end connections using

the IP protocol. TCP guarantees message delivery and “in-order” packet delivery.

The TCP layer further separates a given IP address into sub-addresses called ports.

Consider an apartment building analogy: the address specifies the building location

while the apartment number tells the exact location of an individual. IP addresses

are equivalent to the apartment building address and ports are equivalent to the

apartment number. In TCP, the port address is a 16-bit value. Therefore, the ports

take on decimal values between 1 through 65535 (port 0 is not normally used). Each

port number represents a service provided by a server. Ports 1-1024 are reserved for

well-known services. For instance, the Simple Mail Transfer Protocol (SMTP), the

de-facto standard for passing electronic mail, is typically found at port 25 and Hy-

pertext Transfer Protocol (HTTP, the protocol of the world-wide web), is typically

found at port 80 [45]. “Typically” is used because a savvy network administrator

can change the ports from their default values to keep an adversary, or curious user,

guessing.

When a service is running and attached to its specified port, the service is con-

sidered to be “listening” on that “open” port–it is listening to the network for a con-

nection request by a client. During the setup of a TCP connection, the two systems

creating the connection execute a three-way handshake. The system initiating the

connection, usually a client system in the client-server model, begins the handshake

by sending a synchronize (SYN) message which, among other things, identifies the

port to which it wants to connect. The service provider acknowledges the handshake

by replying to the client with a synchronize and acknowledge (SYN|ACK) message.

The initiating system completes the handshake with an acknowledgement (ACK)

message. It is at this point that the higher-level protocol may begin to exchange

11

information. A similar tear-down handshake is required to remove this connection

when the transaction completes. If the server doesn’t have a listening service on

the requested port, it is supposed to reply with a reset (RST) message after the

initial SYN. That is, both sides abort the connection before it has begun–no further

messages need to be exchanged [43].

Using this protocol knowledge, a program can be written to perform what

has been termed a port scan. The program performs a three-way handshake on all

available ports either using a predefined list of IP addresses or building one on the

fly (using a technique similar to a ping sweep). When the server completes the three-

way handshake, the port scanning program knows the server has an open or listening

port and, potentially, which service that server is providing. The process of initiating

and tearing down the connection requires a minimum of seven packets–three for the

initial handshake and four for the tear-down [43]. To omit the extra packets for the

tear-down, once the port scanner receives the SYN|ACK message and knows that the

server has a service listening, it can answer the third part of the handshake with a

RST message which, as stated above, aborts the connection. Therefore, it only takes

three packets to determine whether a given port is open. This reduces the number of

packets that cross the network. As an example port scan tool, nmap is an extremely

popular port scanner available for multiple operating systems. Its technology has

been incorporated as an integral part of several commercial and commercial-quality

network inspection and network defense tools [56]. Figure 2.1 shows a typical nmap

run on a single system.

One side-benefit of a port scan is the knowledge of how the probed system

responds to the scan. Using the TCP header fields and the flags within those fields,

coupled with prior experimental knowledge, nmap can often determine the operating

system/platform of the host system, solely based on how it replies. nmap could (but

currently does not) make similar guesses based on the services it finds open (e.g., Mi-

crosoft uses several specific ports to provide file and printer resource sharing, which

12

C:\ > nmap -sS -P0 -p 1-2048 -O -T 3 192.168.0.37
Starting nmap V. 3.00 (www.insecure.org/nmap)
Interesting ports on SERVER (192.168.0.10):
(The 2042 ports scanned but not shown below are in state: closed)
Port State Service
13/tcp open daytime
37/tcp open time
135/tcp open loc-srv
139/tcp open netbios-ssn
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS
Remote operating system guess: Windows Me, Win 2000, or WinXP
Nmap run completed – 1 IP address (1 host up) scanned in 1 second

Figure 2.1: nmap execution [56]

other operating systems do not ordinarily use). This process is often called “finger-

printing” the host’s operating system. As a network administrator, this information

is quite useful for managing a homogeneous network. When used in multiple session

over time, a network administrator can discover new systems, and possibly new ser-

vices, within the network. Non-standard or unauthorized operating systems within

the network can also be discovered.

A more aggressive operating system fingerprinter is Xprobe. Instead of the

brute force methods of a port-scanner, Xprobe sends a minimal number of specially

crafted ICMP packets to the target system to determine key aspects of the system

and then crafts its next packet to refine its information. While still using a signature-

based database to match against, it uses “fuzzy logic” to make decisions about how

well the signature matches its database entries and streamlines the probing packets

to better fit the guess [15]. Note, however, that Xprobe only fingerprints systems–it

does not map services to systems like nmap.

When used against an adversary, a network aggressor can use the results of

fingerprinting to focus an attack. Given a particular operating system (or class of

operating systems), the aggressor can determine whether or not a certain vulnera-

13

bility exists and possible exploits of the adversarial system. For instance, if a system

is fingerprinted as a Windows 2000 Server, it is unlikely that an exploit against a

Cisco Ethernet switch would be effective, leading the network warrior down a more

fruitful path with more effective exploits.

Another pseudo-active technique uses the Simple Network Management Proto-

col (SNMP). SNMP is an application-layer communication protocol used as a method

of managing TCP/IP networks, including individual network devices, and devices in

aggregate [27]. SNMP also reverses the client-server architecture. A network mon-

itoring workstation or server is actually the client requesting information while an

SNMP agent resides and runs on the system to be monitored, answering requests

for information and performing functions on the specific system. The protocol al-

lows a network programmer to peruse specific data about networked systems. Since

device enumeration was a commonly performed task, the tool snmpwalk was devel-

oped. snmpwalk uses the SNMP “GET” and “GETNEXT” requests to connect to a

SNMP-enabled system. It enumerates all of that system’s SNMP variables and their

contents, effectively dumping the entire contents of the SNMP agent’s database. A

sample snmpwalk command and its results are shown in Figure 2.2, below.

> snmpwalk -Os -c public zeus system

sysDescr.0 = “SunOS zeus.net.cmu.edu 4.1.3 U1 1 sun4m”
sysObjectID.0 = OID: enterprises.hp.nm.hpsystem.10.1.1
sysUpTime.0 = Timeticks: (155274552) 17 days, 23:19:05
sysContact.0 = “”
sysName.0 = “zeus.net.cmu.edu”
sysLocation.0 = “”
sysServices.0 = 72 [snm2002]

Figure 2.2: snmpwalk execution [38]

This process provides a great deal of information which can be used by the

network mapper to create detailed maps of the network. The primary drawback is

that every system included in the mapping process requires a properly configured

14

SNMP agent to respond to the monitoring station. Thus, the network administrator

requires physical or remote control of the system in order to provide the correct

information and passwords into the systems. The use of SNMP can grow unwieldy if

the network manager is expected to configure the whole enterprise for SNMP, down to

individual workstations. Consider an Air Force base as large as Travis Air Force Base.

Its 10,000 person population requires over 5,000 computer systems, client and server

alike, to keep its people on the network. Usually, only those critical systems (e.g.,

electronic mail servers, gateway routers, server-side Ethernet switches, etc.) under

the system and network administrator’s direct control are configured with an SNMP

agent for monitoring and control, greatly simplifying configuration management of

those systems and the SNMP configuration in general. Configuring a large system

of network devices to work with SNMP is both an intimidating and highly political

tasking due to the large number of hosts and organizational spans of control the

system crosses. SNMP also allows changes to be made on SNMP-enabled systems

(if the agent and its configuration on that system support and allow it). Indeed,

hackers and adversaries can exploit SNMP in order to send commands to cause

critical systems to fail. SNMP requires a great deal of understanding as well as a

security-minded individual to provide strong protection against external or internal

invaders.

2.6 Strengths and Weaknesses of Active Mapping

Active techniques are a boon for network administrators. Using all of the above

techniques, Hewlett Packard’s OpenView - Network Node Manager automatically

discovers, maps and tracks systems and network devices throughout the network. It

uses a combination of active techniques during its network discovery process. “An

ICMP ping is issued for each device ... and an snmpwalk command is issued to

gather information about each discovered device” [31].

15

Active methods are accurate. A ping can tell the mapper whether or not

a system exists as well as the address of that system. It can infer the network

address based on its address and can determine where that system lies within the

network hierarchy. Using nmap’s port-scanning and operating system fingerprinting

techniques, the mapper can further refine the data within the map and provide

an accurate picture of the network at hand, the services it provides and a basic

topology. In general, if a machine is providing a service, active techniques will find

it. These techniques are listed as the second step of exploration in Hacking Exposed

as a primary information gathering technique against an adversary’s systems [47].

Active methods don’t require a great deal of configuration. As long as systems

are left in their default configuration (i.e., not configured to block ports and allow

ICMP echo messages to flow), a single command line can generate most, if not all

of the data needed to generate a cohesive network map. There is no need to touch

each machine (either through the network or via hands-on) to enable an active scan

of that system. This is especially helpful when the mapping target is an adversary’s

system.

Active methods are quick. It only takes one round-trip time from the mapper

to the target to determine the existence of a system and one more round-trip time to

determine if a given service port is listening–if the probed machine isn’t configured

to drop connections to non-listening ports. With one ping packet, the mapper can

determine whether the system exists; with another three packets, it can determine

whether or not a given port is open or closed (not responding). Using nmap, a

network manager can scan the network for live systems using a myriad of functions.

Comparing multiple results over time, scans can determine if new or changed services

exist. The scan can also discover rogue system architectures–possible attempts by

an adversary to infiltrate the network, all within the round trip time of a packet to

flow across the network.

16

There are drawbacks to active scanning. Probably the most obvious is that the

probe can be detected by an adversary. Active scanning techniques are analogous

to active radar or sonar; the adversary knows their system is being probed. When

a stream of ping requests or port scan packets comes from a system, two pieces of

information are conveyed. The first is the probe itself and second is the probed

system identify the source of the probe via the IP addresses. There are techniques

such as reflection or “zombied” machines which provide some anonymity for the

probe, but the adversary still knows a probe has taken place. With that knowledge,

the adversary has the capability to react to the probe. The reaction can take the

form of shutting down access by creating filters on routers and firewalls. Certain

portions of the network architecture can be changed after the probe so the systems

are not the same after the probe, rendering the data from the probe useless. If the

adversary decides to retaliate, “hack backs” or denial of service attacks could be

launched against the probing system.

These active techniques also add extra traffic to the network. In an adversarial

role, with the probe pointed outward, the additional traffic is probably a not an

issue. However, during the probe, traffic needs to exit the probe’s network, transit

through the larger Internet to the target system, then finally navigate its way back to

the probing system. This could have the effect of rendering the adversary’s network

unusable or unreachable if it becomes inundated. It could also affect the performance

of the local network during the probe, due to the exiting and returning packets

through the gateways. Connectivity to the outside network could fail due to the

overwhelming response.

When active techniques are used to scan an internal class B network of po-

tentially 65535 nodes, the network can be quickly inundated with probing packets.

For instance, in its default configuration, nmap initially attempts an ICMP ping to

check for liveness, and then scans for 1,675 well-known ports. Scanning each system

requires 3 packets x 1,675 ports or 5,025 packets. For a modest class B network

17

with 1,000 nodes, this equates to over 5 million extra packets on the network. While

most networks can easily handle that much traffic, this could overwhelm a small,

poorly implemented or hastily deployed network. In addition, a network administra-

tor might use the complete spectrum of port addresses to provide services. Indeed,

a standard scan of an Air Force base’s network infrastructure checks every port for

accessibility as well as enumerating potential system vulnerabilities using Internet

Security Scanner [26]. Therefore, there are 3 packets x 65,535 ports = 196,605 pack-

ets for one machine and 196,605,000 packets for the same 1,000 node network! A

configuration item within nmap can throttle the frequency of requests. Normally

nmap sends its next packet as soon as it receives the results from the previous one,

thereby hitting the target host with its next request. Use of this technique will keep

the mapper from overwhelming the network or any one system with packets, but

increases the completion time of the port scan.

Finally, active measures can be easily foiled. Simply setting up a firewall

around the critical network systems, especially in proxy mode–rewriting packets

instead of simply filtering and passing them on–greatly hinders active mapping.

Many operating systems now include built-in firewalls (i.e., Windows XP, Linux)

which accept only known port or IP address traffic and block active mapping.

2.7 Passive Network Mapping Techniques

Passive network mapping techniques collect the network traffic generated by

normal, day-to-day activity to form a map of the network. No extra traffic is needed

nor generated because the mapper has full access to the network traffic as it passes

through the system. Therefore, it is quite possible to use passive techniques without

detection.

Similar to active mapping, passive techniques rely on the stimulus-response of

network systems talking to one another. The stimulus is provided by the normal

activity of clients and their users, not by the third-party mapping system. While

18

active techniques allow the mapper to send specially crafted packets to obtain fo-

cused information, passive techniques do not unless the passive mapper happens

to see responses to the extra active mapping traffic occurring on the network it is

monitoring.

Passive techniques should be designed to be truly passive. That is, these tech-

niques should not add traffic to the network while performing mapping duties. As

a side-effect of this approach, the passive mapper can discover low-uptime systems.

While an active measure “misses” a system because it is offline, passive techniques

would ultimately catch it when it transmits data [29]. Finally, these passive tech-

niques only detect ports and services on systems that are in use. Conversely, active

systems waste a great deal of time looking for ports that may not even be open. A

passive system can immediately determine whether a system is providing a service

on a given port. Like the active system, it can make note of a successful three-way

handshake upon connection of a client to a server and then record that server as hav-

ing the service. This is similar to the way the active port scan decides whether or

not the port is open based on a (possibly aborted) TCP connection. Since a passive

mapper receives all network traffic, it is quite possible that the mapper could miss

packets or become overwhelmed by large volume networks. There are techniques, to

be discussed further in Chapter 3, that address this problem.

A device or sensor that can observe all of the traffic coming across a network is

needed. This device is essentially a protocol analyzer, or “sniffer.” The sniffer must

be in a position within the logical network where a great deal of a given site’s traffic

and a wide range of traffic types are present to be effective. This location depends a

great deal on the purpose of the information gathering. For a friendly installation,

the sensor can be placed anywhere. Ideally, the sensor would be placed where it

could listen in on the service providers or possibly near gateways to other networks

(such as the Internet at large).

19

Giovanni suggests a network choke point, such as a gateway router or firewall

for the location of the sniffer [30]. This is how an intrusion detection system (IDS) is

typically placed. The IDS monitors all traffic in- and out-bound through the network

boundary to detects from outside (or even inside) the network.

There is, however, a problem with this technique. Systems targeted for moni-

toring must have a system connection on the other side of the choke point. In other

words, by placing the sensor at the gateway border, all of the local “self” traffic of

systems is lost. Recovering the self traffic requires the sniffers to be logically close

to the server or client requesting the service.

For use in an adversarial role, the choke-point model can be flipped. Instead of

listening to traffic “departing” through the gateway, sensors are distributed through-

out the Internet in front of educational, commercial and government gateways. These

sensors listen for and analyze inbound traffic coming from an adversary’s network to

categorize the adversary’s network systems.

This leads to a number of obstacles, not the least of which is that the adversary

must connect to those institutions or corporations where the sensors are placed.

Second, getting permission for the installation of these sensors could be extremely

difficult, especially if the installation was a government-run project. Third, the

number of provided services would have to be quite diverse. Since most services

provided these days are simply web or ftp services (especially for anonymous remote

connections), a diverse set of requests may not be seen. Indeed, the only traffic

would be from systems which are acting as clients. These would be end-user systems

(normally, administrators do not use their mission-critical systems to arbitrarily “surf

the ’net”) and little would be gained. Finally, a data collection and aggregation

system is needed along with a method to get data from disparate sites to that

aggregation system to sort through the volume of data collected. Doing so would

suddenly increase the site’s network traffic by transporting information about the

incoming traffic to the aggregation point. Global organizations likely will not be

20

willing to decrease bandwidth resources and violate customer/employee privacy to

support this. However, given a diverse enough set of sites and services, this would

probably work. The Russian Federal Security Service (the successor of the KGB)

thinks so. Indeed, an AP article [48] reported that this organization has “opened a

hole” in most Russian Internet providers’ systems for monitoring and possible flow

control of system data. Not only does this organization have access to their own

citizens’ communications, but also the traffic generated by their requests and can

make inferences about the services outside of their sphere of influence. Information

gathered from these systems on the inbound side would be of great intelligence value,

if it could be captured, analyzed, and mapped.

This is similar in concept to the distributed Honeynet built by the Honeynet

Alliance [8]. While not fully implemented, the Alliance has placed production hon-

eynets and honeypots for hackers to attack in various places around the world. The

remaining step is to set up a central database, a clearinghouse, to aggregate signa-

tures and attack logs from those honeynets for further analysis for trends and the

like.

2.8 Stumbling Blocks

Passive techniques are quite functional for a local network manager who has

full control over network devices. These systems are simpler to configure and manage

than active systems because no actual configuration is necessary. Since the passive

mapper would not require any specific addressing, it could simply be plugged into

the network, turned on and begin mapping the network by listening.

However, using passive techniques against an adversary is quite problematic to

implement. While the placement of the sensor is obviously important, the amount of

traffic means absolutely nothing if the sensor cannot see any traffic (other than the

traffic destined for itself). Ethernet is a shared, broadcast medium with each node on

a segment being able to “hear” all the traffic on the wire, no matter if it is destined for

21

that system or not–it is up to the network driver on each host to determine whether

or not the traffic is destined for its host. The shared medium allows a sniffer to

function. However, with the advent of layer-2 switches, every device connecting to

the switch becomes its own Ethernet segment. By default, the intelligence inside

the switch only sends packets destined for a given system to that system and does

not broadcast to all the attached systems. As a means of increasing performance by

reducing the number of collisions on an Ethernet segment, this switching technique

has decreased the ability for a sniffer to work. To overcome this, one of two things

must happen to troubleshoot a switched network. One, a non-switched hub is used,

connecting the system under test and the network sniffer to it, as well as providing

an uplink to the original switch. Thus, the hub extends the original segment so

that the sniffer can ride the same wire. This method requires physical access to the

systems and would not work in an adversarial role unless human agents infiltrate and

place these devices in the adversary’s systems. A second option is to configure the

original switch to use what Cisco Networks terms a Switched Port Analyzer (SPAN)

port [20]. With this function enabled, the given port with the sniffer attached can

be mapped to receive duplicate traffic which transits one or more of the other ports.

This allows the sniffer to see all traffic that traverses the switch. This technique

works in an adversarial role; break into the switch, reconfigure it and start listening.

An alert network administrator would notice that something had changed. In this

case, success depends on the inefficiency of the adversarial administrator.

Another problem the passive mapper experiences against an adversary is well-

administered firewalls or filtered gateways. Not only do these tools block the place-

ment of a sensor, the firewall could be configured in such a way as to keep needed

mapping data from getting out to a collection point. There are ways around this

such as using covert channels, piggy-backing data, or packets on top of other system’s

communications, but again, the adversary’s ineptitude is needed for success.

22

2.9 Relevant Research

Even though passive network mapping can provide valuable information, the

task is extremely hard to accomplish. This is a hard problem to solve for many rea-

sons, not the least of which is the placement of the sensor platform. Several research

and white papers discuss the technique of passive system fingerprinting [29,39,50,53].

This technique captures third party and the stimulus-response of normal network

communications to assess the operating system and platform of two communicating

systems. More often than not, packets are captured at a local IDS as an adversary

connects to a system or someone connects to theirs. As mentioned above, most

operating systems implement the TCP/IP stack with slight differences due to RFC

compliance, protocol optimization concerns, or simply different interpretations of

the standard. Each stack implementation can be fingerprinted based on reaction to

given packets, packet sizes, and options within those packets. Since a passive lis-

tener does not have control over system packet flow, additional information may be

needed (i.e., more similarities or more differences) to determine the characteristics of

the encountered operating system/platforms. Also of note is the fact that knowledge

is gained via the traffic which flows past the sensor. While fingerprinting is helpful,

it does not reveal which services are running on a given system.

While the above referenced works were largely theoretical, some built working

systems were built. The first, a prototype system based on Giovanni’s first paper [29],

is the program called siphon [16]. It implements a functional passive fingerprinting

system, but the developers haven’t updated it since 2000. Another, more mainstream

passive fingerprinting systems is p0f (which is a “hacker” acronym for “passive oper-

ating system fingerprinting”). This application is currently in version 2.0.3 (updated

in September 2003) and is actively maintained by Michal Zalewski [57]. It is packaged

as part of several Linux operating system distributions. Again while very helpful in

determining the probable operating system of two communicants, it does not neces-

23

sarily help in the field of mapping (although, implementing some of this code in a

mapping system might provide additional insight).

Built on the success of earlier versions of p0f and other tools, the program

ettercap [7] is a general purpose network utility. This tool has several functions

including standard network sniffing, man-in-the-middle sniffing via ARP poisoning,

and passive network mapping. The passive mapping function relies on the network

traffic being visible to the host it is running on, and does not work remotely. Not

only does it map TCP-based services to a given IP address, but it also identifies the

Ethernet address (often called the MAC–media access control–address), host names

gleaned from name service packets, and it uses an early p0f engine to fingerprint the

hosts of packets it sees.

Other research related to passive monitoring lies within the analysis of the

traffic itself, not specifically mapping topologies and the system services provided.

Brownlee [18] used passive techniques to analyze the utilization of his university’s

external link to the Internet. This research focused primarily on the Transport layer,

examining TCP and User Datagram Protocol (UDP) traffic flows. A secondary focus

investigated web-centric traffic. No attempts were made to perform mapping, only

load and flow analysis. Cohen [23] also used passive techniques (basically sniffing) to

discover differences between the observed and actual network topology. These differ-

ences were present for months in reports but analysis had not been accomplished to

reveal them. Ultimately, Cohen developed a new network map for the system to as-

sist in the troubleshooting. Finally, three studies [21,22,28] concentrated on network

sampling technologies to profile Internet traffic. These studies examined high-speed,

high-utilization links where even high-performance analysis systems failed because

of the volume of traffic that needed to be analyzed. Instead of analyzing every sin-

gle packet, the researchers looked into statistical methods and temporal analysis to

determine traffic flows. While analysis of high-speed links and characterization of

24

that traffic is important, it is not of much use to the network manager or the person

who desires to find out information about a specific network.

2.10 Summary

This chapter discussed the need for network mapping, active and passive tech-

niques in general and specific versions of those techniques in detail. Active techniques

have already proved their usefulness. Passive systems have yet to prove their worth.

There is potential in these systems that have not yet been tapped. The difficulty in

implementation lies with devising network devices and keeping the systems stealthy.

25

3. Methology

3.1 Introduction

This chapter describes the thesis methodology. Section 2 describes the spec-

ification of a notional passive mapping system. Section 3 describes the design of a

custom passive mapping program. Section 4 describes the design and development

of the test-bed environment which meets the needs of both active and passive map-

pers. Section 5 discusses the design of the thesis experiments. Section 6 describes

the evaluation technique. Section 7 describes the overall experiment, including the

execution of an experimental trial.

3.2 Active Mapping

There are a number of freely and commercially available network port-scanners

which can actively map networks. However, nmap is selected in this investigation as

a representative sample–and possibly the best–of all active mapping systems. This

tool, nmap, is freely available, the source code is open to the public and it is one

of the most popular and widely-used freeware hacking tool in-use [37, 44]. nmap is

currently ranked #12 in popularity of the registered 31,708 projects on freshmeat–an

online index of Unix-based software projects [2]–and was ranked #9 in September of

2003 [55]. In fact, it has reached mainline stardom being featured as a hacker tool

in a sequence in the motion picture The Matrix Reloaded [54]. The more difficult

part of this research is finding a passive system that meets the needs of a network

administrator (or hacker).

3.3 Specification of a Passive Mapping System

A passive mapping system is needed to compare the performance of a passive

technique with that of an active one. The requirements of a notional passive mapping

system are developed, below.

26

3.3.1 Functional Requirements. First and foremost, a passive mapping

system must use non-invasive means to discover information about the network.

Eliciting a reaction from the network environment by sending out specially crafted

packets not acceptable. Second, the system should provide a method for getting the

discovered information out of the network it is monitoring. This can be done with

a two-part system. First, is the sensor which listens to the network and forwards

information to a collector. The collector processes the input from the sensor and

formats the data into a readable format and/or visualization. The sensor should

be self-configuring. In other words, after connecting the system/device into a net-

work (or running the program on an existing system), the program should discover

everything it needs to operate.

Since the system must remain stealthy, the sensor cannot transmit a persis-

tent stream of information through the network. Instead, it must buffer as much

information as possible and only then send an information packet to the collector.

Built-in timers must allow an unfilled buffer to be transmitted after a given timeout

value to keep data from stagnating or getting lost due to sensor system failure. To

further optimize outbound traffic, the sensor must remember previously transmitted

items and not repeat transmission of those items. The sensor must make note of

the addresses and ports of transactions which transit outside the network bound-

aries. Then, it can masquerade as a known (and probably trusted) host inside the

network. Using such a technique may enable the sensor to more easily and stealthily

get its information past border gateways and firewalls. The collector must present

the gathered information in an appropriate manner for user viewing, whether a list

of discovered servers, clients and services or a map laying out the discovered network.

As no freely available system has been designed that meet all these specific

requirements, it is necessary to choose a subset of these requirements, find a program

which implements a portion or all of them or build a new one. This chosen subset

includes:

27

• two part system,

• buffered data output,

• timer-based data output,

• non-repeated output, and

• collector formatted data for output.

3.3.2 Non-Functional Requirements. There are non-functional require-

ments for the passive mapping system. First is keeping the system as simple as pos-

sible. Learning how to write or modify a multi-threaded program is a time-consuming

process. Keeping the program single-threaded further simplifies code maintenance

later on. In addition, using external data sources, such as SQL databases or other

database techniques would depend on the system it is running on. Implementing a

full-up database is not in the best interest of a tool running in an adversarial mode,

trying to remain stealthy. Second, the program needs to be kept as small as possible.

If running on an active system in an adversary’s network, using a large number of

system resources to keep running is not recommended. The more resources con-

sumed, the higher the risk of detection. Finally, the system must be reasonably fast

in terms of execution time. A Java-based system, which uses a virtual machine,

is slower than, say, a C-language counterpart. Java is also detrimental due to the

number of resources consumed during execution. It must be fast enough to examine

inbound packets without dropping them.

3.3.3 Code Exploration. With these requirements in-hand, suitable candi-

dates for use or modification were sought. This investigation discovers the following

tools:

siphon - Multi-threaded C-language program that uses the PCAP packet cap-

ture library [34]. This particular tool is old, unsupported and marginally functional.

It is, however, the first program to implement Giovanni’s ideas about passive oper-

ating system fingerprinting [16,29]. Operating system fingerprinting, while not part

of the mapping research, would add an additional feature to the existing feature set.

28

p0f - Single-threaded C-language program which uses the PCAP library. This

tool performs passive operating system fingerprinting on distant-end systems con-

necting to the fingerprinting host. This is the initial candidate.

tcpflow - Single-threaded C-language program also uses the PCAP library. The

tool stores captured packets as flows in multiple files based on end point IP addresses

and connected ports. The entire conversation between two hosts is dumped into a

file–one file per conversation–and analyzed later. Like most PCAP-based sniffers,

tcpflow can also read the input from a PCAP dump file.

ettercap - Multi-threaded interactive C-language program. This is the third

candidate after p0f and tcpflow. This tool has code for the port mapping built-

in and is a native network-sniffing tool. As an additional feature, ettercap captures

“banners” of service providers (such as the banner that an FTP server displays when

an individual logs in) which aids in discovery of services as well as fingerprinting

the operating system. ettercap uses text-based user-interface. It displays mapping

information, but requires user-interaction to fully display the information gathered

about a given host. ettercap has a command-line mode, which non-interactively logs

the gathered information. This mode displays only the Ethernet address, the IP

address and any fingerprint information it discovers. It does not display ports in-use

or the banners that it captures.

3.4 Design of a Passive Mapping System

Study of the main portion of p0f and additional study of ettercap’s dryad

module ultimately led to development of a custom program using similar techniques.

lanmap applies dryad’s mapping technique and uses the PCAP library to capture

packets.

The method ettercap’s dryad module uses is similar to nmap’s–based on the

response to stimuli given to the network device. If, upon a probe, nmap receives

a SYN|ACK response, the port is open and providing a service. If nmap instead

29

receives a RST response, the port is not open. If nmap does not receive a reply

after a certain timeout period, it knows nothing new about the state of that service

or machine (unless it had earlier “detected” the machine with an ICMP ping or an-

other open port–then the port attempt would be considered “filtered” or, essentially

firewalled).

Therefore, when dryad sees a SYN packet, the source IP is usually a client

requesting a service on the destination IP’s system. Dryad does not care much

about clients; it is looking for active, responding services. So, if the destination IP

responds with a SYN|ACK, dryad marks that IP address as a service provider for

the requested port. Dryad ignores RST messages; omission of a port in its “map”

simply means it has not seen evidence of the existence of that port in use.

Figure 3.1 is pseudo code which describes the operation of the lanmap program.

The pseudo code used here is really simplified source code, to ease understanding of

the flow of the program.

The pseudo code accurately describes the way the program lanmap works.

Since lanmap is a program designed to discover everything it can about a network,

clients findings are important as well. Therefore, SYN messages, are use to mark

the source as a client on the attempted port connection.

The Address Resolution Protocol (ARP) and Reverse Address Resolution Pro-

tocol (RARP) map unique IP addresses to unique hardware addresses [40]. The

hardware address range determines the network card manufacturer. This leads to

exploitation of known vulnerabilities in the network card’s drivers for a given oper-

ating system. For systems such as Dell or Compaq servers, their embedded network

hardware addresses uniquely identify the manufacturer of the server so even the

brand of machine can be discovered.

The information that ARP/RARP messages provide is redundant: PCAP al-

ready provides full Ethernet headers to the calling program. Mapping a destination

30

lanmap()
open network port with pcap
initialize emission timer
initialize emission queue
set interrupt hooks
loop

packet ← next pcap packet
if (packet.protocol = IP) // IP packet?

// add source Ethernet/IP mapping
AddToQueue(type = ether, eth addr = src.ether, ip addr = src.ip)
// add destination Ethernet/IP mapping
AddToQueue(type = ether, eth addr = dst.ether, ip addr = dst.ip)
if (packet.IP.protocol = TCP) // TCP packet?
if (TCP.flag = SY N and TCP.flag 6= ACK) // initial request from client?

AddToQueue(type = client, address = src.IP, port = dst.port)
else if (TCP.flag = SY N and TCP.flag = ACK) // response from server?

AddToQueue(type = server, address = src.IP, port = src.port)
end if // TCP

else if (packet.IP.protocol = UDP) // UDP packet?
// add both source and destination IPs as UDP server and client
AddToQueue(type = uclient, address = src.IP, port = src.port)
AddToQueue(type = userver, address = src.IP, port = src.port)

end if // UDP
end if
if (emission timer.expired or emission queue.nearlyFull)

emit emission queue packet
clear emission queue
reset emission timer

end if
end loop
/* shouldnt get past here, unless interrupted */
if (interrupted)

/* by user break (Ctrl-C) or other terminating signal from operating system */
if (emission queue.notEmpty)

/* dying, try to get the last bit of information out */
emit packet

end if // queue not empty
end if // interrupted
display statistics

end lanmap

Figure 3.1: lanmap algorithm

31

IP address to a destination Ethernet address (and the same for the source addresses)

only requires one IP packet. Thus, ARP/RARP packets can be ignored.

TCP constitutes the substance of this investigation. Using the methods de-

scribed above and in the pseudo-code in Figure 3.1, a vast amount of information

can be learned about client and server machines and their IP addresses.

UDP is similar to TCP, but no handshaking is into the protocol. There is no

way to conclusively determine which end of the connection is a client and which is

the server. Therefore, both of the source and destination addresses are marked as

a client and server on the appropriate ports. This ensures no mappings are missed,

is simple, and results in fewer state variables to track (the last time a given address

and port combination were seen).

A particular challenge of lanmap is creating efficient internal data structures

to maintain knowledge of previous mappings. Instead of using an external database,

lanmap uses an internal hash table to store mapped items. The hashing function is

a simple exclusive-or hash over the mapped item data fields. Finding some simple

code online saves time here [1].

collector, the central repository of mapping data, needs a similar database, but

requires sorting for display purposes. Therefore, an ordered, doubly linked list is

used which collects the mappings transmitted by lanmap [49]. See Figure 3.2 for

collector ’s pseudo-code.

3.5 Design Of The Test Environment

During the final stages of programming the lanmap and collector programs,

more realistic testing of the program’s correctness in identifying traffic as it traversed

the network is needed. It is time to select and start utilizing a suitable network traffic

generator. A traffic generator should emulate multiple network clients connecting to

multiple network servers on multiple ports and predetermined or randomized times

in a repeatable manner.

32

collector()
open UDP socket for listening
set interrupt hooks
loop

packet ← nextpacket
for i ← 0..sizeof(packet)

entry ← packeti
if (database.contains(entry))

do nothing
else

AddToDatabase(entry)
end if

end for
end loop
/* normally don’t get here, unless interrupted */
if (interrupted)

/* by user “break” (Ctrl-C) or other terminating signal from operating system */
dump report to screen/log

end if
end collector

Figure 3.2: collector algorithm

3.5.1 Traffic Generators. Several candidate traffic generators with promis-

ing features are readily available.

tg is one of the earlier traffic generators for the Unix operating system world.

tg tests end-to-end capacity and throughput. It consists of a pair of programs, one

the sink side and the other the source side. Once the sink is running and the source

launches, the source sends as much data as fast as it can while keeping track of how

much is sent. The sink also keeps track of what it receives. A third script/program

combines the source and sink log files and describes the performance and capacity

of the channel.

While a good tool for empirically testing end-to-end capacity, error rate, and

bandwidth, it does not meet the needs of the passive mapper. The passive mapper

needs to see diverse traffic from multiple sources to multiple sinks. tg only provides

for connectivity on one port at a time. Worse, neither the source nor sink can be

bound to a specific IP address on the local system.

33

NetSpec provides an array of scripting functions that can perform simultane-

ously or in synchronous lock step and (also has a single point to control the number

of systems involved in the test. NetSpec is used to provide network traffic while

testing lanmap and collector during final stages of completion. However due to the

manner in which TCP connections expire (i.e., entering the TIME WAIT state and

the server port remaining in-use, but unusable at the same time) [43]. NetSpec will

not start a second test using the same server-side port number because that port is

still marked as “in-use.” [11]

NISTNet generates traffic and can inject delay and jitter into network streams.

NISTNet is installed by by patching into the Linux kernel. Since NISTNet desta-

bilizes the test bed computer systems and constantly caused kernel panic dumps, it

does not provide for any salient evaluations [12].

tcpreplay injects TCP trace traffic (sniffer data files) onto the network from

a tcpdump file. tcpreplay was developed “in the hopes that a more precise testing

methodology might be applied to the area of network intrusion detection.” It is able

to change the IP addresses and Ethernet addresses of source and destination nodes

so that passive devices like sniffers and intrusion detection systems as well as routers

and firewalls can react as if the traffic were coming from real hosts within the network.

This method is not appropriate–the complex interplay of client-to-server connections

is captured with single-sided script and reduced to network traces. Moreover, as

further explored below, this method does not provide an appropriate environment

for the active mapping system [52].

Chariot was originally coded and provided by NetIQ but development has been

taken over by Ixia. Chariot is also a network testing application and is quite robust.

Like NetSpec, Chariot runs on multiple machines and provides a single console to

control the experiment. It also has a flexible GUI for control as well as after-action

data gathering and analysis. It will automatically send a RST message to open ports

when testing is complete. This means the same system can restart using the same

34

server port without delay. Additionally, Chariot has many scripts for simulating

various network conversations (e.g., client and server-side ftp session or client and

server side Windows login session) to further extend its possibilities [6].

LARIAT (Lincoln Adaptable Real-time Information Assurance Test bed) was

funded by the Air Force and DARPA, built by Massachusetts Institute of Technol-

ogy’s (MIT) Lincoln Labs and is capable of generating LAN-like traffic based on

observed user behaviors. The system uses a complex database and multiple Win-

dows and Unix/Linux machines to generate traffic, simulate servers, DNS domains

and sampled Internet web pages.

NISTNet is essentially a pass-through or traffic generating product; it is not

meant to provide services. tcpreplay transmits packets around the network for IDS-

like systems to react to and provides no port-based services. The other three traffic

generators are still configured pair-wise; even Chariot, with its superior GUI and

capability to create banks of test systems, ultimately configures the experiment as

a group of client-server pairs. When the phase of an experiment has two systems

talking to one another on a specific server port, that port is open and available (and

detectable by an active scanner such as nmap). However, when that part of the

experiment is completed, the port is not detectable because it is not open constantly

as a true server port would be. A method is needed which works properly with both

active and passive methods.

The best method is one that generates traffic on various network ports using

appropriate protocols. At the same time, it needs to look like a full network con-

figuration with servers providing properly operating open ports, providing services.

The best candidate, LARIAT, provides both of the requirements but it requires too

many resources [14]. Therefore, this investigation uses honeyd.

3.5.2 honeyd. honeyd is a program that creates virtual honeypots. A

honeypot is an information resource that looks like a true server, but has no real

35

production value except for being attacked or exploited by hackers. It is a lure, not

a true service-provider. Therefore, any network connections to or from the system

is likely a probe, an attack or a compromise [8, 50]. honeyd can emulate not just

one system, but a complex network of them. Each virtual system in the honeypot

network (honeynet) has a profile so that it reacts as a real server would. For example,

given the profile of a Windows 2000 server, the virtual honeypot would react, at the

TCP/IP stack level, just like a Windows 2000 server would. Thus, active and passive

operating system fingerprinting systems like nmap or Xprobe identify the virtual

honeypot system as a Windows 2000 server. honeyd also has a scripting function

which allows specialization or expansion of various aspects of the operation of the

virtual machine. Network packets are passed to the script, which acts on them and

generates output. Output is sent back into honeyd as a reply to the originator of

the connection. So, a complex system of virtual systems can be configured and act

and react like suite of servers. The honeyd configuration is developed, tested and

deployed (see Appendix D).

3.5.3 syntraf. Setting up a suite of clients to inject traffic into the network

and interact with the newly constructed suite of servers is more complex than it

seems. However, when a standard client program, such as sendmail, accesses the

network, it usually uses the default IP address for the network adapter; the program

could choose an arbitrary IP address to use during the communication with the

server, but unless that functionality is built into the program, a rewrite of the utility

is required. Without this support, all output connecting to the servers appears to

come from one IP address, not a suite of clients, which, while not wrong, still does

not generate the number of clients connecting to many servers model of a network.

Since no viable tool was discovered in the traffic generator search, some sort of

custom program is needed. The tool syntraf was created to serve as the client-side

traffic generator.

36

Figure 3.3 shows a high-level block design of syntraf. Development of several

small Java classes, each built upon a simple TCP client-server model program [32,51]

creates a suite of client-side modules capable of exchanging messages with servers

using similar protocols. For example, consider a client module that does nothing

more than perform simple mail transfer protocol (SMTP, e-mail) sessions. It is

capable of creating an e-mail message and connecting to an SMTP server to fully

transmit it.

A client sequence class schedules the various client modules. Each client se-

quence simulates a given client machine and executes its client modules in some

given, repeatable order. This generator randomly selects which client modules ex-

ecutes next. No weight or proportionality is given to any single module; each is as

likely as the next to get chosen. While this technique does not address the self-similar

nature of network traffic and is simplistic in nature, it is able to provide appropriate

traffic for the passive mapper–the primary thrust of this investigation.

Finally, syntraf has a simulation controller class which reads and parses a

user-specified configuration file and creates all of the client sequencers and then

launches them as threaded processes. The only remaining part is a configuration file

describing the client environment. Using personal knowledge and a mix of client-side

users, a client-side configuration file is generated which gives an interesting mix of

client-side modules. Appendix C, Section C.1.4 for Traffic Generator Source Code

and Section C.2.2, Traffic Generator Configuration Files can be consulted for more

information.

3.5.4 Verification of Code Operation.

3.5.4.1 lanmap and collector. To ensure that lanmap and collector

are responding as designed, they were incrementally tested with actual e-mail and

web traffic while using the UNIX-based e-mail program pine and the Netscape-like

web browser Mozilla Firebird to connect to real servers. At each phase of imple-

37

Figure 3.3: syntraf System Block Diagram

mentation, both of these tools are used to ensure continuing operation of lanmap

and collector. When a single connection is made between client and server, four

mappings are expected:

• Client IP to Client Ethernet Address

• Client IP to Client-side Service

• Server IP to Server Ethernet Address

• Server IP to Server-side Service

When repeating the connection, no additional mappings are created. As long as

this holds for each client-server-service connection, the program is acting properly.

If the server IP address is on a different network (which requires a hop across a

gateway), then the server IP is mapped to the gateway’s Ethernet address. If the

client attempts connection to a target IP address which does not exist, either zero or

two mappings are generated. If the IP address is within the network address range

assigned to the client (calculated through the given IP address and network mask

and/or given network address), the client host will perform an ARP lookup to find

the local Ethernet address assigned to the requested IP address. If this ARP fails,

then no IP traffic is generated and, therefore, no mappings are generated. However,

if the target address is outside of the network scope, the TCP/IP connection will

attempt to connect through the default gateway configured on the client. In this

case, the following three mappings are generated:

38

• Client IP to Client Ethernet Address

• Client IP to Client-side Service

• Server IP to Gateway Ethernet Address

Since the client is attempting to connect, it is assumed that the client is a

consumer of the given service, even if it cannot successfully connect. Finally, when

a client attempts connection to an existing IP address where the service is not being

provided, three mappings are generated:

• Client IP to Client Ethernet Address

• Client IP to Client-side Service

• Server IP to Server Ethernet Address

The server-side connection will not succeed. It will generate a RST message

on a normally configured system. On a firewalled system, it should not reply. In

either case, the server IP-to-Ethernet address mapping would not be generated.

3.5.4.2 syntraf. During the development of syntraf, each client mod-

ule (e-mail, ftp, web, etc.) is tested against live servers to ensure proper operation.

Each client’s protocol document (Internet Request for Comments) is also consulted

to take into effect any deviations unknown to the researcher as well as specific error

codes and messages emitted by a server of the given protocol. Finally, syntraf, lan-

map, and collector are tested together. tcpdump traces are collected to ensure that

lanmap sees what syntraf generates and collector sees what lanmap outputs. The

traffic generated by each program is meticulously checked to ensure full system flow

of information. During the experimentation phase, several traces are hand analyzed

to ensure the flow matches.

3.5.4.3 honeyd. The honeyd configuration was debugged using con-

trolled client connections (again, using the telnet, mail, and web programs described

above) to ensure proper operation [19]. Then, the syntraf and nmap programs were

incorporated into the testing to ensure proper operation.

39

3.6 Design Of Experiments

3.6.1 Approach. The methodology used herein is based on the empirical

study of actual systems in a controlled environment. Each mapping system is runs

on a real network to perform its mapping function. Built-in software measurements

and third-party sniffer logs provide the metric collection functions. The results of

the mapping session are tallied and compared to the known network configuration

and then compared to the other method using statistical methods.

3.6.2 System Boundaries. Each mapping system consists of the mapping

probe/sensor itself, and a collector which may coexist on the same system. Figure 3.4

is a block diagram of the overall system.

Figure 3.4: Mapping System Block Diagram

3.6.3 System Services. Both the active and passive mapping systems gener-

ate a list of IP addresses and the client and/or server ports observed to be functional

at that IP address.

3.6.4 Performance Metrics. With respect to the mapping techniques, four

separate metrics are collected. Table 3.1 shows the metrics chosen in determining

the performance of a network mapping system.

Relevant metrics are those which measure the accuracy and efficiency of the

mapper’s decision algorithm. The number of server or client address-to-service

matches measures the accuracy of the system. This metric is simple to collect in the

experimental environment: simply count the number of correct address-to-service

matches as appropriate for the client or server. These metrics are gathered from

40

Table 3.1: Performance Metrics
Performance Metric Measure of
Server address-to-service matches (Server Discoveries) Accuracy
Client address-to-service matches (Client Discoveries) Accuracy
Count of packets received (Packets In) Efficiency
Count of packets transmitted (Packets Out) Efficiency

logs and reports generated by the mapping system using custom Perl scripts (see

Appendix C, Sections C.1.1 and C.1.2 for uncollect.pl and ungrep.pl, respectively) to

normalize their respective results. These normalized logs are compared against the

traffic generator configuration (for the Client Discoveries) and against the honeyd

configuration (for the Server Discoveries) using a custom Java matching program,

matchem (see Figure 3.5 for pseudo-code or Appendix C, Section C.1.3 for full source

code).

Since the experimental network is known, comparing the results from the map-

ping system to the actual network is simple. False positives mappings are also

tracked. If the given mapping system decides that a service exists at an address

when it does not, that decision gets added to the false positive count. This metric

is also gathered at the time of the matching procedure.

To measure efficiency, the number of packets received by and generated from

the mapper are counted. tcpdump logs all incoming and outgoing IP and ARP pack-

ets that the mapping system’s host receives or generates [35]. Since there are no

other services running on the mapping system’s host during the experiment, only

mapping traffic is received by the host’s network interface. Additionally, the num-

ber of packets dropped by the operating system kernel is collected. Depending on

processor speed and the network load, it is possible for the passive network map-

per and/or the tcpdump sniffer to drop packets. While this is a performance issue,

dropped packets can change the outcome of an experiment. “Discovery” metrics are

both “higher-is-better” metrics–the more discovered about the network, the better.

Conversely, the “Packets” metrics are both “lower-is-better” metrics–the more pack-

41

matchem()
clientHitCount ← 0
serverHitCount ← 0
falsePositiveCount ← 0
totalItemCount ← 0
read honeyd configuration

add to known item database
update totalItemCount

read traffic generator configuration
add to known database
update totalItemCount

open discovery log file
while (not EOF(discovery log)) loop

entry ← nextrecord
if (database.contains(entry))
if (entry.type = server)

serverHitCount ← serverHitCount + 1
else if (entry.type = client)

clientHitCount ← clientHitCount + 1
end if

else
falsePositiveCount ← falsePositiveCount + 1
dump entry to screen/log

end if
end loop
close discovery log file
display serverHitCount
display clientHitCount
display falsePositiveCount
display totalItemCount

end matchem

Figure 3.5: matchem algorithm

42

ets on the network needed to make those decisions the worse the method is. Total

Discoveries is the sum of the Client Discoveries and Server Discoveries metrics for

a given trial. It is also “higher-is-better” metric. These metrics are used to further

derive the metrics in Table 3.2.

Table 3.2: Derived Performance Metrics
Derived Performance Metric Measure of
Total Discoveries (Combined client and server matches) Accuracy
False Positives Accuracy
Overhead Packets In (Count of Inbound Overhead Packets) Efficiency
Total Network Overhead (Overhead Packets In + Packets Out) Efficiency

The only metric that bears further definition is the “count of overhead packets

in.” Both mapping methods (given the passive mapper works in a mapper / collector

pair) generate packets. Thus, packets emitted by either system are considered over-

head. Input packets, however, are a different matter. The active mapper generates

extra traffic, anticipating the target will respond which would generate further over-

head traffic, seen as input to the active mapper. The passive mapper only uses the

traffic on the network and, therefore, does not observe this phenomena. The passive

mapper has no overhead with respect to input. The number of overhead packets in,

Oin, is calculated as follows:

Oin =

0 : ifMethod = ”Passive”

Packets In : ifMethod = ”Active”

The “Total Network Overhead” is simply the sum of the two Overhead factors.

The Overhead metrics are “lower-is-better” metrics.

3.6.5 System Parameters. System parameters are those configuration items

or settings which cause the system to change and affect the way it acts or reacts

to a given workload. There are several system parameters that effect the mapping

systems. First, of course, is the method by which the network is mapped. Both active

43

and passive methods have unique characteristics in their operation and generation

of results. Second, placement of the sensor within the network is an important

parameter. The active mapper needs unfettered access to the hosts it is mapping.

This means that it cannot be on the other side of a firewall or equivalent network

device. The probes must be allowed through and the responses must be allowed

to return to the mapper in order to generate an effective map. A passive mapper

needs even more access to the network traffic. Is the mapper on a network hub

in the same Ethernet collision domain as the servers? Is it on a hub with clients?

Or is it on an Ethernet switch only receiving packets destined for its hardware

address? With the passive mapper, the more traffic and greater diversity of traffic

it can collect gives it more data to map. The amount of time a mapping system

uses to discover the network also changes its performance. With either system,

the more time available, the more information gathered and the more accurate the

picture formed. The speed and capacity of the sensor platform may also contribute

differences in success or failure. In both cases, the sensor platforms need sufficient

memory and processor speed sufficient to the task. Otherwise, they are overwhelmed

with input and network packets could be dropped, losing the information that they

were to provide. Maximum available bandwidth goes hand-in-hand with the CPU

and memory capacity. If the mapper is running with a 10 megabit network interface

on a moderately utilized 100 megabit network segment, it is likely that the sensor

will drop or even miss packets. Finally, latency due to long-haul circuits and multiple

hop paths through a network can change the speed at which each mapper receives

packets. These parameters are summarized in Table 3.3.

3.6.6 Workload Parameters. The workload the systems are offered affects

the performance and outcome of the systems, which result in several parameters.

The amount of existing network traffic can affect the speed of the active mapper by

increasing delay due to congestion and possibly dropped packets. The greater the

amount of this background traffic, the more network services the passive mapper

44

Table 3.3: System Parameters
Parameter Potential Levels
Mapping method used active or passive
Amount of time given to perform mapping 0 sec - 1 week
Number of mapping sensors in the network 1 to any number
Location of sensors within the network same as clients, same as servers
Type of network connection switch or hub
Location of the collector inside or outside (the probed net)
Available system memory 32MB to any size
Processor type and speed Pentium 3 500MHz or faster
Network interface type and speed 10MB, 100MB or 1000MB
Network latency 0.0 msec to any latency

can discover. Again, if the passive mapper is overloaded, packets are dropped and

accuracy is potentially lost. The pattern of the existing network traffic can vary

widely minute-to-minute. Since most traffic is generated by user action (i.e., logins,

reading and writing e-mail, fetching web pages, etc.), it is essentially random. The

number of clients and the number of servers will also affect the workload. A workload

with a large number of clients connecting to a large number of servers will be much

different than one with a small number of clients connecting to a large number of

servers or vice versa. These workload parameters are summarized at Table 3.4.

Table 3.4: Workload Parameters
Parameter Potential Levels
Number of service providers in the network 1 to any number
Number of services provided by the network 1 to any number
Number of clients in the network 1 to any number
Number of packets traversing the network 1 - 99% utilization
Packet arrival rate 0 up to bandwidth limits
Type of environment normal or firewalled

45

3.7 Factors

The following system and workload factors are chosen to provide for a smaller

set of experiments. These factors are also chosen as it appears they have the most

affect on the outcome of a mapping session.

3.7.1 System Factors. To narrow the scope of this research, this investi-

gation limits the factors to the method used for mapping, either active or passive.

Since the method used is the premise of this investigation, this factor is a necessity.

The second factor is the Time Given for the mapping function to run. There are five

levels to the Time Given factor–times chosen during pilot runs of each technique due

to interesting things happening at those times. These two factors are summarized

at Table 3.5. Since the testing environment is not capable of putting a sniffer device

on the “server” side since it only exists virtually, other factors were not considered.

Furthermore, the PCAP library is incapable examining the internal structure of hon-

eyd. Using more than one sensor on this test network is not needed; one sensor can

see all of the traffic from all the clients in the simulation. A Cisco 2950 switch is

used for all tests. Since Ethernet switches are becoming more prolific, finding a hub

in a production network is becoming increasingly difficult. Hardware factors such

as the CPU, available memory, and the speed of the network adapter are all fixed.

Network latency is minimal; the only network device is the switch.

Table 3.5: System Factors
System Factor Levels
Method active or passive
Time Given (minutes) 0.5, 1.0, 5.0, 10.0, or 40.0

The bandwidth and available CPU speed and memory are fixed for both the

active and passive mapping systems. The mapping system is one Dell Dimension

4100 running a 500 MHz Pentium III with 512MB of RAM. The network interface

is a 3Com 3C905 10/100Mb Ethernet adapter running at 100Mb, full-duplex. The

location of the sensor is on the same network switch as the clients.

46

3.7.2 Workload Factors. To limit the number of experiments and to focus

on the goal of this investigation, the workload factors are limited and adjusted. First,

the workload is adjusted by using three randomized traffic generation patterns, the

third of which revealed interesting properties during pilot testing. Second, the server

environment in which the mapper works is adjusted to two scenarios: firewalled and

normal. In the firewalled scenario, each service-providing system is configured such

that a connection to any port not configured with a service is dropped, instead of

the RST message back to the originator. The normal scenario is just the opposite,

and more like a normal system inside a firewalled boundary. These factors are

summarized at Table 3.6. The levels in the Traffic Pattern factor are numeric seeds

to the random number generator in the syntraf traffic generator program.

Table 3.6: Workload Factors
Workload Factor Levels
Traffic Pattern (seed) 1, 2 or 4
Scenario Firewall or Normal

The other parameters remain fixed. Both of the honeyd scenario configurations

provide for 136 unique address-to-service mappings and the traffic generator configu-

ration provides for another 321 unique client-side address-to-service mappings. This

amounts to 457 unique items for the mapper systems to find. The packet or message

arrival rate is dependent upon the traffic generator and the response of the honeyd

network system, and is not considered as a factor.

3.8 Evaluation Technique

This investigation measures real systems in a controlled network environment.

Since the network topology and configured services are known a priori, it is a simple

matter of comparing found items to the known items.

3.8.1 Systems Environment. The test system environment hardware is il-

lustrated in Figure 3.6 and Table 3.7 shows the specific system information summary.

47

Table 3.7: Hardware Environment Specifications
System CPU (MHz) RAM (MB) Firmware Network Card
Switch Cisco 2950-24 20 12.1(13)EA1 n/a
Sniffer/Collector PIII/933 (C) 256 A11 3C905
Mapper PIII/500 (K) 512 A11 3C905
Honeynet PIII/1000 (C) 512 A11 3C905
Generator PIII/800 (C) 256 A11 3C905

Each system is running Debian GNU/Linux “unstable” distribution, with Linux

Kernel version 2.4.22. The unstable distribution provides the latest updates and pro-

gram fixes as well as some leading-edge code, but has not yet been officially released.

Debian has not released a full stable distribution since late 2000 [5]. Linux is se-

lected as the operating system since its source code is freely available. Many of the

hacker tools developed over the past few years have been targeted at Linux. nmap

and siphon were both Linux targets before spreading to other operating systems.

Finally, Linux runs well on the limited hardware resources available to this research.

Debian has a very robust package dependency checking using the APT utility; two

simple commands update the installed software and include any dependencies if ad-

ditional software is installed.

Each system has two network interfaces, one connected to a control network,

the other connected to the test network. The control network is used to remotely

login to each machine and execute the commands to perform each experiment. The

control network interface uses 10Mbit network cards. The test network is 100Mbit

and is the network which is used during the experiments. The two networks are kept

logically separate by using separate virtual lans (VLANs) within the Cisco 2950

switch. See Figure 3.6 for an overview.

3.8.2 Software Environment. Each of the systems have specific roles and

therefore have specific software installed in the test bed. The software items are

detailed in Table 3.8.

48

Figure 3.6: Hardware Environment

Table 3.8: Major Software Components
Software Primary System
tcpdump v3.7.2 All
honeyd v0.7a Honeynet
lanmap / collector Mapper and Sniffer / collector
nmap (timer modification) v3.48 Mapper
syntraf Generator
KDevelop v2.1 (KDE) Generator

49

Since time is a factor in the experiments, the mapping systems must be in-

strumented with a timing device to halt execution of the mapping systems. It was

easier, however, to set a timer in the traffic generator than it was in the C pro-

gram lanmap. When terminating lanmap, it dumps collected information to a log.

Since it does not rely on the traffic generator for input, nmap needs to be stopped.

However, when terminating an nmap session, nmap merely releases memory in use,

closes any open files and terminates in an orderly fashion. Any collected information

is lost. By adding a command-line option, moving selected procedural variables into

the global scope and adding a timer signal handler, a timer-capable nmap is born.

A session-timeout value, measured in seconds, can be specified. When the timer

expires, nmap stops probing, ignores any incoming packets, and displays or logs the

network information it collected thus far.

3.8.3 Test System Interaction. The systems interact as depicted in Fig-

ure 3.7 for an active experiment and Figure 3.8 for a passive one. honeyd is initialized

and prepared for receipt of traffic. When performing an active mapping experiment,

the sniffer system is “tapped” into all network traffic by using a SPAN port on the

2950 switch which redirects incoming traffic on the remaining systems’ switch ports

to its switch port. The sniffer system runs a tcpdump session to capture all IP and

ARP traffic. The mapping system gets a command-line prepared for the current

experiment (see Figure C.1 in Appendix C for specifics). A syntraf session is started

for the appropriate time period plus 30 seconds allowing sufficient time to start the

mapping system. The experiment ends when the nmap session is complete. A “Ctrl-

C” break stops the syntraf and tcpdump sessions and the tcpdump logs are gathered.

Logs from the honeyd side are saved into their own directory.

When performing a passive experiment, there are differences in the system op-

eration. honeyd is initialized first. Instead of the sniffer machine pm a SPAN port,

however, the mapper system, lanmap is connected to the SPAN port. Therefore,

the tcpdump session to keep track of packet counts must be executed on the map-

50

Figure 3.7: Active Test System Configuration

per. Since the Cisco 2950 switch is limited to one SPAN session, both lanmap and

tcpdump need to run on the same system. The collector machine starts a collec-

tor session. lanmap starts on the mapper and redirects its network output to the

collector machine. Another limitation of the Cisco 2950 switch is when using the

SPAN port, no traffic may be input into the switch through that port. Therefore,

the mapper requires two network interfaces to function. In this case, the mapper

uses the control network to emit its packets to the collector. The lanmap program

keeps track of the number of packets and their sizes sent to the collector as the

tcpdump process cannot watch more than one network interface at a time. Finally,

a syntraf session is begun on the traffic generator system. The experiment ends

when syntraf ceases transmitting (at its timeout value). lanmap is stopped, then

collector. tcpdump is stopped and finally honeyd. As before, logs from all processes

are collected and saved.

51

Figure 3.8: Passive Test System Configuration

3.9 Experimental Execution

A full factorial design with three repetitions results in a total of 2 (method)

x 5 (time slots) x 2 (scenarios) x 3 (traffic patterns) x 3 (replications) = 180 trials

for the all experiments. To perform a given experiment the script in Figure C.1 is

followed.

3.10 Summary

This chapter has discussed the requirements of a notional passive network

mapper, examined possible candidates to use as a passive mapper and the design

of a custom passive mapper. Further, this chapter discussed the requirements of a

network mapping test bed, taking both methods, active and passive, into account

and construction of such a test bed. Next, it discussed the design of experiments,

including system and workload parameters and the factors chosen for this research.

52

Finally, this chapter discussed the evaluation technique and overall interaction of all

the systems, custom as well as off-the-shelf.

53

4. Analysis

4.1 Introduction

This chapter describes the execution of the experiments and the analysis of the

data. Section 4.2 describes the method of data collection and the software packages

used for generating statistical results, and the initial Analysis of Variance (ANOVA).

Section 4.3 describes the comparison of the accuracy metrics. Section 4.4 discusses

comparison of the efficiency metrics. Section 4.5 discusses overall findings. Finally,

Section 4.6 discusses limitations of the experiments and methods chosen.

4.2 Collection of Data and Analysis of Variance

As described in Chapter 3, all the experiments are performed, in an identical

fashion, varying the factors as appropriate to the given trial. Results are collected

using the Perl scripts to normalize the output log files of lanmap and nmap and then

read by the matchem program to determine their accuracy. These results are initially

entered into an Excel R© spreadsheet (see Appendix A). Later, the statistical software

package JMP R© is used to gather the information for better statistical analysis.

A quick examination of the response variables indicate a large range between

the minimum and maximum value of each response variable. According to Jain [36],

because the ratio of ymax/ymin is large (where y is the appropriate response variable),

a logarithmic transformation is useful. Therefore, for the remainder of this analysis,

all of the response variables are log (base 10) transformed; any zero results in the

original data, remains a zero result in the log transformed data.

Also note that during the testing there were no false positives generated by

either mapping method, probably due to the relatively pristine configuration of the

network. This response variable is ignored for the remainder of this examination.

54

4.2.1 Eliminating Traffic Pattern Factor. Up to and including the five

minute time category, the Traffic Pattern appeared to have some effect on the out-

come of the tests. However, THE variance chart on “Log Total Discoveries” and the

ANOVA as seen in Figure 4.1, indicate otherwise. The results show that the Traffic

Pattern has virtually no effect on “Log Total Discoveries.” So, in an effort to remove

Traffic Pattern as a factor, confidence interval tests on all of the gathered response

variables were conducted.

Figure 4.1: Overall Analysis of Variance of the Effects for “Total Discoveries”

Generating confidence intervals (CIs) for the Server and Client Discoveries

response variables produces Table 4.1 and Table B.1 in Appendix B, respectively.

As these results show in both client and server cases, all three means are contained

in the other confidence intervals. This means that they are statistically the same

and can be ignored with respect to the accuracy metrics.

The results in Table B.3 and Table B.4, both in Section B.1 of Appendix

B, show the confidence intervals of “Packets In” and “Packets Out” metrics. These

results also show that the mean and standard deviation estimators for all three Traffic

Patterns are statistically equivalent given a 95% confidence interval. Therefore, the

55

Table 4.1: 95% CI on Server Discoveries by Log Traffic Pattern
Estimator Pattern Estimate Lower CI Upper CI

Mean 1 1.264 1.100 1.429
2 1.271 1.106 1.435
4 1.257 1.094 1.421

Std Dev 1 0.636 0.539 0.779
2 0.636 0.539 0.775
4 0.634 0.537 0.773

Traffic Pattern factor can be ignored as it does not result in any significant variation

in the response variables.

This is not a surprising outcome, however. When run over a short amount of

time, it is quite possible for the traffic generator not to use given services and/or client

combinations and produce varied results. But when the random number generators

are given long enough (apparently between five and ten minutes worth of events),

the traffic generator will have used all possible combinations within its configuration,

obviating any differences due to the Traffic Pattern.

4.2.2 Examining Factor Effects on Metrics. With the Traffic Pattern factor

eliminated, the effects of each of the factors in each of the response variables are

tested. In Table 4.2, the bold highlighted probabilities shows those factors which are

statistically significant to the outcome of the “Client Discoveries” metric.

Table 4.2: Effects Test for Log Client Discoveries (α = 0.05)
Source Nparm DF SS F Ratio Prob > F

Method 1 1 252.170 760001.357 4.53E-296
Time Given*Method 4 4 1.146 863.325 3.86E-107

Time Given 4 4 1.146 863.325 3.86E-107
Scenario*Method 1 1 0.006 18.945 2.39E-005

Scenario 1 1 0.006 18.946 2.39E-005
Time Given*Scenario 4 4 0.003 2.517 4.35E-002

Time Given*Scenario*Method 4 4 0.003 2.517 4.35E-002

56

The statistics show that all of the first level, second-level and the one third-level

effects are statistically significant to the outcome of the Client Discoveries response

variable. However, the statistics also show that the first level Method factor has the

strongest affect on the outcome, with the first level Time Given and the second level

Time Given*Method factor having an equal secondary effect.

Interestingly, when testing the Server Discoveries response variable as in Ta-

ble 4.3, the Time Given factor provides slightly more effect than the Time Given*Method

second-level factor. The first-level Method factor has the third-highest effect. While

the Method factor does not dominate here, it is a contributing factor. Obviously,

the number of Server Discoveries is sensitive to time.

Table 4.3: Effects Test for Log Server Discoveries (α = 0.05)
Source Nparm DF SS F Ratio Prob > F

Time Given 4 4 32.334 23486.751 2.23E-220
Time Given*Method 4 4 28.895 20988.414 1.77E-216

Method 1 1 3.829 11124.780 8.56E-150
Scenario 1 1 2.188 6357.945 1.01E-130

Scenario*Method 1 1 1.860 5405.586 3.12E-125
Time Given*Scenario 4 4 1.106 803.682 9.08E-105

Time Given*Scenario*Method 4 4 1.157 840.224 3.06E-010

When considering the “Packets In” response variable, different mix of effects

were significant as shown in Table 4.4. While the outcome is still dominated by the

Method factor, the second-highest effect is the first-level Scenario factor. This is

due to the solely to nature of the nmap active mapper. The Scenario factor varies

the type of server environment between a firewalled suite to a standard suite. When

nmap probes a firewalled host and receives no response in a given time frame, it

repeats that probe up to three more times. If no answer is received, that server/port

combination is marked as “filtered” because it cannot mark it open (no SYN|ACK

response) and cannot mark it as closed (no RST|ACK response). So, during the

firewall scenario, the mapper does not receive packets back in response to a non-

existent service. On the other hand, when mapping during the normal scenario, all

57

the non-existent probes return the RST|ACK. So dependent upon how many ports

are scanned, nmap gets as much as it gives.

Table 4.4: Effects Test for Log Packets In (α = 0.05)
Source Nparm DF SS F Ratio Prob > F

Method 1 1 145.536 1438839.450 0
Scenario 1 1 65.585 648407.756 1.49E-290

Scenario*Method 1 1 60.915 602238.296 5.47E-288
Time Given 4 4 48.103 118892.467 1.12E-276

Time Given*Method 4 4 4.617 11410.679 2.32E-195
Time Given*Scenario 4 4 1.382 3415.676 9.68E-154

Time Given*Scenario*Method 4 4 1.404 3469.597 2.80E-154

The test for Packets Out is similar to the Client Discoveries effects and can be

found in Table B.8 in Section B.2 of Appendix B. It is not duplicated here.

As can be seen in three of the four response variables, the Method factor is

the primary effect. Clearly, the Method factor, either active or passive, has a great

deal of effect in the outcome of these three variables, and is in two of the top three

effects of the final response variable. Looking at the derivative metrics may provide

more information about these effects.

4.2.3 Examining the Derivative Metrics. Continuing the exploration of the

effects of the response variables, the “Total Discoveries” metric, Table 4.5 shows the

effects of the two accuracy outcomes (Client Discoveries and Server Discoveries) in

aggregate. Again, the Method factor is the strongest, followed by the Time Given

and second-level Time Given*Method effects. This is not too surprising due to the

fact that the number of Client Discoveries is driven primarily by the Method factor

and has a larger outcome. On average, there are approximately 124 clients discovered

relative to the 38 servers discovered. Since the Total Discoveries metric is a simple

sum of the Server and Client metrics, it stands to reason that the Client Discoveries

and its effects, would drive the Total Discoveries metric to a great extent.

58

Table 4.5: Effects Test for Log Total Discoveries (α = 0.05)
Source Nparm DF SS F Ratio Prob > F

Method 1 1 75.623 185190.932 4.89E-247
Time Given 4 4 41.490 25401.171 4.26E-223

Time Given*Method 4 4 21.561 13199.974 2.09E-200
Scenario 1 1 2.246 5499.876 8.14E-126

Scenario*Method 1 1 1.808 4427.709 1.62E-118
Time Given*Scenario 4 4 1.141 698.388 3.86E-100

Time Given*Scenario*Method 4 4 1.123 687.270 1.30E-099

Examining the effects with respect to the Overhead Packets In metric, again

the Method factor has the greatest amount of effect on the outcome. See Table B.10

for details. Remember as discussed in Chapter 3, due to the nature of the mappers,

any packet outbound of the mapper system would be over-and-above the normal

traffic transiting the network. Therefore, the Packets Out metric is functionally

equivalent to an Overhead Packets Out metric and is not discussed further.

Finally, in Table B.11, the Method factor once again dominates the outcome

of this response variable. Not surprising since the two values feeding this aggregate

metric were dominated by the Metric factor.

Seeing as how three out of four primary response variables are dominated by

the Method factor and all of the derived response variables are dominated by the

Method factor, it appears that the Method factor is the primary factor driving the

response of the system.

4.3 Comparison of Accuracy Metrics

4.3.1 Overall Accuracy. Next, we evaluate the 95% confidence intervals of

the accuracy response variables (Server, Client and Total Discoveries) and from the

two Method levels of active and passive. Then compare the CI’s to see if the CI’s

capture the other response variable’s mean or standard deviation estimator. Since

the overall data is skewed due to the time factor, this comparison focuses on the

59

40-minute Time Given factor, where the discovery results are maximized for both

methods.

Table 4.6 shows this comparison for Server Discoveries. Since neither the con-

fidence interval of the means nor the standard deviation captures the estimators,

they are statistically different, and, in this case the active mapper discovered more

information about the network than the passive mapper did.

Table 4.6: 95% CI on Log Server Discoveries by Method (Time=40)
Estimator Method Estimate Lower CI Upper CI

Mean Active 2.101 2.097 2.104
Passive 1.431 1.431 1.431

Std Dev Active 0.007 0.006 0.011
Passive 0 0 0

Due to the method the passive mapper uses, it would not see any traffic for a

service that goes unused. In this case, most servers were not fully exercised by the

clients. If the clients had been configured (rather artificially) to connect to every

server on every port, the passive mapper would have seen it and these results would

be more similar. As it stands, however, the active mapper is the one which exercises

more ports–1656 in this case–on all of the systems it can discover. If the passive

mapper were listening during the active mapper’s scan, its server discoveries metric

would be much higher.

With respect to the Client Discoveries, however, the active mapper found noth-

ing. Table 4.7 shows that the passive mapper is superior. As clients do not provide

services but rather consume them, the active mapper cannot discover them. Indeed,

active mapper systems are designed to find open service-providers, not the clients

who use them.

These two comparisons don’t provide a clear-cut winner, so it becomes neces-

sary to compare the Total Discoveries to determine best overall performance with

respect to accuracy. Generating this confidence interval as shown in Table 4.8 dis-

60

Table 4.7: 95% CI on Log Client Discoveries by Method (Time=40)
Estimator Method Estimate Lower CI Upper CI

Mean Active 0 0 0
Passive 2.507 2.507 2.507

Std Dev Active 0 0 0
Passive 0 0 0

closes that the passive mapper is the better of the two with regard to overall number

of discoveries. Indeed, since there are typically more users (and, therefore, clients)

using a network than servers, the passive mapper discovers more about a given net-

work while watching transactions cross its path.

Table 4.8: 95% CI on Log Total Discoveries by Method (Time=40)
Estimator Method Estimate Lower CI Upper CI

Mean Active 2.101 2.097 2.104
Passive 2.542 2.542 2.542

Std Dev Active 0.007 0.006 0.011
Passive 0 0 0

4.3.2 Accuracy over Time. Part of this examination looks at performance

of the methods over time. Figure 4.2 shows the mean values plotted over time for

the respective mapping method. The overall effect of the graphic is evident: the

passive method is the overall winner.

Interestingly, the active mapper found no clients but it did discover more

servers than the passive mapper, as mentioned above.

4.4 Comparison of Efficiency Metrics

4.4.1 Overall Efficiency. A similar examination of the efficiency metrics,

specifically looking at the “overhead” metrics shows similar results. Remember that

the overhead factors are describing extra traffic on the network and are considered

detrimental to the function of the mapper. In fact, both the Overhead Packets Out

61

Figure 4.2: Discoveries over Time (higher is better)

and Total Network Overhead show that the passive mapper is superior. Table 4.9

demonstrates this.

Table 4.9: 95% CI on Total Network Overhead (Log # Packets)
Estimator Method Estimate Lower CI Upper CI

Mean Active 4.523 4.413 4.634
Passive 2.082 2.030 2.134

Std Dev Active 0.527 0.459 0.617
Passive 0.249 0.217 0.291

The active mapper generates many packets and also stimulates other network

devices to generate packets in response. The passive mapper does its job with fewer

overhead packets.

4.4.2 Efficiency over Time. Figure 4.3 shows the mean values plotted over

time for the respective mapping method. Note that the Time Given (the x-axis

scale) is categorical rather than a true time scale, due to the time periods chosen.

However the passive method is clearly more efficient.

4.5 Summary

honeyd and syntraf were configured with 136 total server-side services and 321

client-side service consumers for a total of 457 discoverable services.

62

Figure 4.3: Network Overhead over Time (lower is better)

lanmap is more accurate than nmap. It discovers at its peak, an average of

76.1% of all configured services (server- and client-side) whereas nmap only found

27.6% of those same services. When considering only the server-side services, lan-

map discovered only 19.9% of those services while nmap discovered 92.7% of the

configured server-side services. Clearly, nmap is better at finding unused server-side

services. With respect to client-side service consumers, lanmap discovered 100% of

all those services while nmap found none. Since most networks contain considerably

more clients than servers, finding the client services in-use provides for more network

discoveries.

When considering the efficiency of each system, lanmap generated an average

of 200 packets of network overhead at its peak network utilization. nmap, on the

other hand, generated over 8,600 packets on average at its minimum utilization

and up to 155,000 packets at its maximum average value.

4.6 Limitations

4.6.1 UDP. The server-side UDP echo server implemented in honeyd

would not reliably react to incoming packets and would block, awaiting input even

when input was made available. It was determined that there were differences with

63

how honeyd and the supporting scripts for the service differ with respect to data

formats and/or some unknown conversion was occurring. Network traces did not

reveal any obvious problems. Packets were arriving at the honeyd system but the

script was not properly handling the input.

In order to “simulate” those UDP services, the configuration files were changed

to put those services which are normally UDP at the same port with a TCP con-

figuration. A side-effect of this is that the active mapper now had more data. In

its default configuration, nmap does not search for UDP ports–those services would

have been invisible to nmap if left on UDP.

4.6.2 syntraf.

4.6.2.1 Thread Execution Order. Each thread in syntraf has its

own random number generator and is seeded by the main program, which also has

its own random number generator. Thus, each thread gets a different seed and

therefore its own order of traffic generation. However, there is still a certain amount

of randomness due to the uncertainty with respect to the execution order of these

threads. Given enough repetition, however, this problem did not seem to have much

of an effect.

4.6.2.2 Similarity to Real Traffic. syntraf was developed as a stable

platform to generate traffic for the passive mapper to analyze. However, due to

its use of the uniform random number generator built-in to the Java libraries, it

does not address the self-similarity of users in a real system. It could be improved

to provide this functionality, but it was not the object to build something wholly

complex. LARIAT exists for that purpose [46]. The needs of this research does not

warrant the complexity of a full-fledged network simulator.

4.6.2.3 Client-side Active Mapping. nmap can and did discover client

computers. However, due to the vagaries of the network configuration, nmap actually

64

mapped the host system’s open ports. Since these were outside the control of the

experiment, these results were discarded.

The result is that the clients that syntraf provides do not have any open

services and do not look “normal.” Instead, they are completely firewalled. They do

not respond in any way to any probes. This was not an oversight; the complexity

of creating a two-sided honeynet-like system, which provided services on one side

and simulated client machines on the other, injecting traffic into both systems was

beyond the scope of this research.

4.6.3 Number of SPAN Sessions. The Cisco Catalyst 2950 switch is only

capable of having one SPAN session–that is, there can only be one port chosen to

host a sniffer. Because of this, the passive mapper had to essentially run two sniffers

on it–lanmap and a tcpdump to capture the traffic seen by lanmap. While there

did not appear to be any problem with the systems used during this investigation

(no packets were dropped due to congestion on any of the experimental trials), it is

obvious that a more loaded network would easily swamp the two sniffers.

4.6.4 nmap.

4.6.4.1 Mapping of the Test-bed Hosts During the Session. nmap’s

discovery capability was complete. In fact, it mapped the host computers hosting

the test-bed. Due to the nature of the configuration, each of the hosts test network

connection had an IP address assigned, in a higher range to keep them “out of

the way.” When nmap was given enough time, however, it found these hosts and

mapped them. These results were discarded and the experiments redone with those

IP address ranges for the host machines excluded from the search.

4.6.4.2 Run Times. Both systems, lanmap and nmap, were given

specific time frames in which they to discover what they could about the network.

lanmap was designed as a run-forever program that reports its results until it is

65

terminated. On the other hand, nmap systematically probes target networks for

services. Once the list of networks is exhausted, nmap is done. In an average of

8.24 minutes, nmap would complete its scan of the given network in the “normal”

scenario. The “firewall” scenario quadrupled that completion time to an average of

37.6 minutes. This extra time is caused by nmap’s extra attempts to find a service

at a non-responding port. nmap gives up after four attempts on a given port. Recall

that the normal scenario’s servers would respond with a RST message instead of

simply dropping the packet and nmap would know that the given port is closed.

Another consequence of the full nmap scan finishing in under 10 minutes during

the Active / Normal scenario, the 40 minute trials would be meaningless. So, one

trial using the 40 minute settings is performed once to ensure that it would still

complete within the 10 minute time frame. Since it does, that result and results

from the 10 minute trials are averaged and placed into the data tables instead of

performing eight more nearly identical trials.

4.6.5 Real Systems.

4.6.5.1 Total Knowledge. It is certainly rare to have total knowledge

and control over the systems contained within a network. Indeed, with user sys-

tems turned on and off throughout a day, random network outages severing ties to

various systems (server and client computers alike), and the day-to-day changes of

a network are the primary responsibilities of network management personnel. Hav-

ing full knowledge of this test bed network enabled right-or-wrong answers about

the existence of systems and their services. In a real network, that information is

not available or worse, not accurate. When using these tools against an adversarial

system where little to nothing is known about the configurations, it is unlikely that

either mapping system will know for a fact if it has made a correct answer about a

given service on a given machine. Using the test bed simplified this and made the

comparisons more accurate.

66

4.6.5.2 Performance. The test network was built for testing a small

subset of a real network. In a real system, with a real, loaded network, this system

would be swamped.

After the experimental trials were completed, the AFIT network administrators

allowed access to the real network to try lanmap’s capabilities on real traffic. lanmap

worked and was able to discover hosts, however, upon completion of a run, lanmap

said it had dropped roughly one-half of the available packets. This was due to

the operating system’s inability to handle the offered load. The operating system’s

packet filter is responsible for providing PCAP with packets based on PCAP’s filter.

However, due to the rate at which these packets arrive, the operating system drops

arriving packets destined for PCAP to keep from overrunning its internal buffers.

When a PCAP function is called to fetch packets from the operating system, the

operating system tells PCAP how many packets it received, and how many were

dropped. lanmap and other PCAP-based programs can determine how much traffic

is lost between calls to the PCAP routines.

A real system would need to have one or more of:

1. a larger packet buffer in the operating system space,

2. a more robust processor, and

3. statistical methods such as those discussed by Claffy [21, 22] for sampling the

data crossing the network.

4.7 Summary

In this chapter, the performance of lanmap and nmap were compared in the

environment specified in Chapter 3. lanmap turned out to work better than nmap in

almost every category, except for the discovery of server-side services. nmap found

92.7% of the offered services while lanmap only discovered those the 19.9% used by

clients. Limitations to this research and its experiments were discussed.

67

5. Conclusions

5.1 Research Contribution

The focus of this research is to empirically compare passive and active network

mapping techniques. This research does that and expands the knowledge base for

network mapping.

This research also created a new mapping utility which provides a method to

map a network passively. An existing algorithm from ettercap’s dryad module was

simplified and enhanced. Simultaneously, adding a simple UDP transmission allows

the system to get the mapping information out of the network being probed. This

research also provided a central collection system where data can be aggregated.

Finally, this research provides a method for generating traffic in a realistic

environment. Even though a single traffic generator is used during the experiments,

there is nothing to keep multiple generators and multiple honeynets from being used

as a traffic-based test bed.

5.2 Performance of the Mapping Methods

The data presented in Chapter 4 shows that passive mapping discovers more

about the network than the active mapper and does so with less overhead on the

network. However, the active mapper excelled at discovering offered but unused

services. Indeed, it discovers all offered services, no matter the scenario. When

mapping a network, you need as much data as possible to represent the network as

accurately as possible.

The traffic generator patterns had little effect on the output. The mapping

method used typically had the most effect with the time factor providing an addi-

tional variance.

68

Both methods perform better when given more time to run. In both cases,

the amount of new information plateaus and after a certain amount of time, no

new information is gathered. Indeed, nmap actually finishes its scan while lanmap

continues to report new items. lanmap discovers more services initially and discovers

fewer and fewer new items as time goes on.

5.3 Conclusions

Accurate data is necessary for generating a network map. Both active and

passive mapping methods provide the information to generate a relatively accurate

network map. In the case of nmap, only the server-side services are discovered and

not the clients which used them. On the other hand, lanmap captured more and

varied information about the network, specifically services offered and consumed,

but was unable to detect those unused services that nmap discovered. Neither tool

discovered the entire network, but lanmap discovered more.

nmap creates much more overhead network traffic than lanmap. Conversely,

lanmap is more difficult to implement in a real environment. Setting up network

switches with SPAN ports or using unswitched hubs at network choke points requires

extra work and maintenance on the part of the network administrator. nmap needs

nothing more than a network connection and an IP address. lanmap does not need

the IP address, but requires more network support to function.

If a network administrator requires a method to map a network without adding

traffic to the network, a passive mapping system such as lanmap would do well as

long as the network management overhead was tolerable. Passive mapping would find

more server- and client-side services being provided and used than active mapping.

If, however, it is more important to find all the network services being provided,

nmap or another active scanner would be more appropriate.

69

5.4 Future Research

5.4.1 lanmap and collector. The lanmap program operates nearly as de-

signed. However, the delayed, random output needs to be implemented. The desire

to buffer output to maintain a certain level of stealth failed, at least during the first

minute of running. First and foremost, lanmap needs to discover the IP range of the

given network so that it can determine the difference between inside traffic (traffic

only traversing the “internal” network) and inside-outside traffic (traffic originating

or destined for external networks).

Finally, the ability of the system to leverage information from other network

devices is needed to complete the tool. In a well-maintained network, an exiting

packet would need to (appear to) be sent from an authorized system. lanmap can

watch the network and determine which hosts are communicating with systems out-

side of the known network. When a host successfully communicates with an outside

source, lanmap can send its information to the collector outside of the local network.

The collector program should be able to draw a network diagram to aid a network

administrator.

5.4.2 Flow- versus Sniffer-Based System. lanmap uses a sniffer-based ap-

proach in discovering information about the network. One consideration at the

beginning of this research was to use NetFlow or similar data to discover the net-

work [10]. It would be interesting to see the results of a similar comparison between

active, passive-sniffer and passive-flow methods of information gathering.

5.4.3 syntraf. syntraf might be a useful tool at a research institution.

However, it needs to be more robust and provide more traffic generation options

such as Poisson- and exponentially-distributed data. Further research could make

this tool into a full-fledged system.

70

5.4.4 Network Loading. The systems used for this research were modest

as were the network loads. This was by design to test if a passive mapper was a

viable solution. However, if the passive mapper is incorporated into operational

network systems, it would encounter real network loading and could be inundated

with network traffic. If the system running lanmap (or similar tool) is not adequate

to the task, vital information may be lost. Further research could determine what

the bounds for a sniffer-based mapping system on given system platforms and what

system improvements would be needed to get there [21,22].

5.4.5 ARP Poisoning. Using ARP poisoning techniques, it would be pos-

sible for the passive mapper to see traffic without the need to configure a SPAN (or

equivalent) port on a network switch. However, once the mapper begins to receive

that traffic, it suddenly becomes an active member of the network, receiving and

forwarding packets. This technique was not used as it does not meet the definition

of a purely passive mapper, but could be implemented as a follow-on project. Inte-

grating ARP poisoning into this system might negate the need for control over the

network infrastructure.

5.4.6 Combining Active and Passive Techniques. Since using either tech-

nique by itself did not discover more than 72.6% of the total number of configured

items, it might be interesting to see how the two techniques would fair if used to-

gether. An active probe could elicit response from an quiet service-provider while

the passive sensor would make note of the result.

71

Appendix A. Gathered Data

This appendix contains the full data-set gathered during the experimentation phase

of this investigation.

Traffic Time Time Server Client Packets Packets

Scenario Method Pattern Given Used Disc. Disc. In Out

Firewall Active 1 0.5 0.5 1 0 37 4965

Firewall Active 1 0.5 0.5 0 0 35 4964

Firewall Active 1 0.5 0.5 0 0 35 4998

Firewall Active 2 0.5 0.5 0 0 36 4342

Firewall Active 2 0.5 0.5 1 0 36 4999

Firewall Active 2 0.5 0.5 0 0 35 4998

Firewall Active 4 0.5 0.5 0 0 35 4998

Firewall Active 4 0.5 0.5 0 0 35 4998

Firewall Active 4 0.5 0.5 0 0 35 4968

Firewall Active 1 1 1 1 0 37 7741

Firewall Active 1 1 1 1 0 37 7735

Firewall Active 1 1 1 1 0 37 7741

Firewall Active 2 1 1 1 0 37 7741

Firewall Active 2 1 1 1 0 37 7735

Firewall Active 2 1 1 1 0 37 7741

Firewall Active 4 1 1 1 0 37 7741

Firewall Active 4 1 1 1 0 37 7741

Firewall Active 4 1 1 1 0 36 7743

Firewall Active 1 5 5 8 0 46 29944

Firewall Active 1 5 5 6 0 52 26792

Firewall Active 1 5 5 8 0 45 29866

Firewall Active 2 5 5 8 0 45 29920

Firewall Active 2 5 5 8 0 45 29956

Firewall Active 2 5 5 8 0 45 29956

Firewall Active 4 5 5 8 0 45 29922

Firewall Active 4 5 5 8 0 47 29112

72

Traffic Time Time Server Client Packets Packets

Scenario Method Pattern Given Used Disc. Disc. In Out

Firewall Active 4 5 5 8 0 46 26886

Firewall Active 1 10 10 35 0 73 57707

Firewall Active 1 10 10 35 0 73 55445

Firewall Active 1 10 10 35 0 72 57796

Firewall Active 2 10 10 35 0 75 57531

Firewall Active 2 10 10 35 0 74 53533

Firewall Active 2 10 10 36 0 73 57761

Firewall Active 4 10 10 35 0 73 55605

Firewall Active 4 10 10 35 0 73 56748

Firewall Active 4 10 10 35 0 73 55699

Firewall Active 1 40 36.85 126 0 167 197795

Firewall Active 1 40 40 126 0 169 194561

Firewall Active 1 40 35.991 126 0 165 197735

Firewall Active 2 40 37.078 118 0 157 183137

Firewall Active 2 40 35.679 126 0 165 197805

Firewall Active 2 40 40 126 0 165 197737

Firewall Active 4 40 36.543 126 0 167 197741

Firewall Active 4 40 40 126 0 165 194155

Firewall Active 4 40 36.169 126 0 164 197792

Firewall Passive 1 0.5 0.5 23 131 7579 48

Firewall Passive 1 0.5 0.5 23 131 7341 56

Firewall Passive 1 0.5 0.5 23 131 7053 49

Firewall Passive 2 0.5 0.5 24 124 7174 55

Firewall Passive 2 0.5 0.5 24 124 7241 50

Firewall Passive 2 0.5 0.5 24 124 7197 54

Firewall Passive 4 0.5 0.5 19 105 7030 39

Firewall Passive 4 0.5 0.5 19 105 6930 40

Firewall Passive 4 0.5 0.5 19 105 6821 39

Firewall Passive 1 1 1 23 185 14936 77

Firewall Passive 1 1 1 23 184 13907 77

Firewall Passive 1 1 1 23 188 14064 84

73

Traffic Time Time Server Client Packets Packets

Scenario Method Pattern Given Used Disc. Disc. In Out

Firewall Passive 2 1 1 26 187 13665 86

Firewall Passive 2 1 1 26 186 13759 85

Firewall Passive 2 1 1 26 186 14202 78

Firewall Passive 4 1 1 23 159 13933 67

Firewall Passive 4 1 1 24 159 13517 70

Firewall Passive 4 1 1 24 159 13236 61

Firewall Passive 1 5 5 27 281 68260 163

Firewall Passive 1 5 5 27 282 67212 160

Firewall Passive 1 5 5 27 282 67647 159

Firewall Passive 2 5 5 27 289 65951 174

Firewall Passive 2 5 5 27 289 65619 166

Firewall Passive 2 5 5 27 289 65668 176

Firewall Passive 4 5 5 26 284 68178 170

Firewall Passive 4 5 5 26 284 66228 159

Firewall Passive 4 5 5 26 284 65559 168

Firewall Passive 1 10 10 27 311 134147 199

Firewall Passive 1 10 10 27 311 132789 187

Firewall Passive 1 10 10 27 311 132935 185

Firewall Passive 2 10 10 27 314 130808 181

Firewall Passive 2 10 10 27 314 132477 190

Firewall Passive 2 10 10 27 314 132657 187

Firewall Passive 4 10 10 26 306 134333 191

Firewall Passive 4 10 10 26 306 134028 198

Firewall Passive 4 10 10 26 306 134312 191

Firewall Passive 1 40 40 27 321 536814 188

Firewall Passive 1 40 40 27 321 530565 192

Firewall Passive 1 40 40 27 321 531169 195

Firewall Passive 2 40 40 27 321 530922 201

Firewall Passive 2 40 40 27 321 531105 196

Firewall Passive 2 40 40 27 321 533250 201

Firewall Passive 4 40 40 27 321 533341 206

74

Traffic Time Time Server Client Packets Packets

Scenario Method Pattern Given Used Disc. Disc. In Out

Firewall Passive 4 40 40 27 321 530624 212

Firewall Passive 4 40 40 27 321 529295 202

Normal Active 1 0.5 0.5 2 0 3374 8252

Normal Active 1 0.5 0.5 2 0 3239 7946

Normal Active 1 0.5 0.5 2 0 3374 8162

Normal Active 2 0.5 0.5 2 0 3374 8192

Normal Active 2 0.5 0.5 2 0 3043 7913

Normal Active 2 0.5 0.5 2 0 3459 8210

Normal Active 4 0.5 0.5 2 0 3373 8192

Normal Active 4 0.5 0.5 2 0 3332 8201

Normal Active 4 0.5 0.5 2 0 3374 8156

Normal Active 1 1 1 2 0 3104 9673

Normal Active 1 1 1 2 0 3390 11576

Normal Active 1 1 1 2 0 3374 10966

Normal Active 2 1 1 2 0 3374 10996

Normal Active 2 1 1 2 0 3292 10759

Normal Active 2 1 1 2 0 3373 10966

Normal Active 4 1 1 2 0 3372 10996

Normal Active 4 1 1 2 0 3373 10995

Normal Active 4 1 1 2 0 3373 10966

Normal Active 1 5 5 67 0 22227 40051

Normal Active 1 5 5 67 0 22354 40240

Normal Active 1 5 5 68 0 22928 40810

Normal Active 2 5 5 70 0 23432 41379

Normal Active 2 5 5 72 0 24526 42427

Normal Active 2 5 5 70 0 23674 41577

Normal Active 4 5 5 74 0 25053 42962

Normal Active 4 5 5 69 0 23925 41827

Normal Active 4 5 5 68 0 22816 40688

Normal Active 1 10 8.32 127 0 44798 69706

Normal Active 1 10 8.282 127 0 44802 69746

75

Traffic Time Time Server Client Packets Packets

Scenario Method Pattern Given Used Disc. Disc. In Out

Normal Active 1 10 8.17 127 0 44659 69564

Normal Active 2 10 8.375 127 0 44800 69723

Normal Active 2 10 8.118 127 0 44801 69671

Normal Active 2 10 8.213 127 0 44494 69446

Normal Active 4 10 8.175 127 0 44829 69711

Normal Active 4 10 8.25 127 0 44800 69671

Normal Active 4 10 8.234 127 0 44801 69725

Normal Active 1 40 8.237 127 0 44753.78 69662.56

Normal Active 1 40 8.237 127 0 44753.78 69662.56

Normal Active 1 40 8.237 127 0 44753.78 69662.56

Normal Active 2 40 8.237 127 0 44753.78 69662.56

Normal Active 2 40 8.237 127 0 44753.78 69662.56

Normal Active 2 40 8.237 127 0 44753.78 69662.56

Normal Active 4 40 8.237 127 0 44753.78 69662.56

Normal Active 4 40 8.237 127 0 44753.78 69662.56

Normal Active 4 40 8.237 127 0 44753.78 69662.56

Normal Passive 1 0.5 0.5 26 149 7955 58

Normal Passive 1 0.5 0.5 26 147 8086 51

Normal Passive 1 0.5 0.5 26 149 7929 53

Normal Passive 2 0.5 0.5 25 137 7880 56

Normal Passive 2 0.5 0.5 25 138 7939 53

Normal Passive 2 0.5 0.5 25 138 7888 56

Normal Passive 4 0.5 0.5 21 115 7912 44

Normal Passive 4 0.5 0.5 21 115 8031 44

Normal Passive 4 0.5 0.5 21 115 7864 49

Normal Passive 1 1 1 26 202 15878 84

Normal Passive 1 1 1 26 202 15965 80

Normal Passive 1 1 1 26 205 15935 88

Normal Passive 2 1 1 27 203 14894 85

Normal Passive 2 1 1 27 203 14941 87

Normal Passive 2 1 1 27 204 15627 92

76

Traffic Time Time Server Client Packets Packets

Scenario Method Pattern Given Used Disc. Disc. In Out

Normal Passive 4 1 1 26 175 15581 72

Normal Passive 4 1 1 26 174 15138 73

Normal Passive 4 1 1 26 175 15189 75

Normal Passive 1 5 5 27 294 72805 173

Normal Passive 1 5 5 27 295 75351 175

Normal Passive 1 5 5 27 295 74870 169

Normal Passive 2 5 5 27 304 73626 178

Normal Passive 2 5 5 27 304 74756 184

Normal Passive 2 5 5 27 304 74702 175

Normal Passive 4 5 5 27 301 74707 182

Normal Passive 4 5 5 27 300 72553 183

Normal Passive 4 5 5 27 301 74574 185

Normal Passive 1 10 10 27 317 146112 196

Normal Passive 1 10 10 27 317 146206 192

Normal Passive 1 10 10 27 317 146117 188

Normal Passive 2 10 10 27 319 146154 198

Normal Passive 2 10 10 27 319 146272 201

Normal Passive 2 10 10 27 319 146855 204

Normal Passive 4 10 10 27 318 145792 201

Normal Passive 4 10 10 27 318 146897 205

Normal Passive 4 10 10 27 318 144623 201

Normal Passive 1 40 40 27 321 580291 200

Normal Passive 1 40 40 27 321 583866 199

Normal Passive 1 40 40 27 321 584611 200

Normal Passive 2 40 40 27 321 586542 197

Normal Passive 2 40 40 27 321 585933 193

Normal Passive 2 40 40 27 321 582133 198

Normal Passive 4 40 40 27 321 583057 199

Normal Passive 4 40 40 27 321 584764 197

Normal Passive 4 40 40 27 321 584585 208

77

Appendix B. Data Analysis Charts

B.1 Traffic Pattern Analysis

Table B.1: 95% CI on Log Client Discoveries by Traffic Pattern
Estimator Pattern Estimate Lower CI Upper CI

Mean 1 1.190 0.879 1.501
2 1.188 0.878 1.499
4 1.173 0.865 1.480

Std Dev 1 1.204 1.020 1.468
2 1.203 1.020 1.468
4 1.190 1.009 1.452

Table B.2: 95% CI on Log Server Discoveries by Traffic Pattern
Estimator Pattern Estimate Lower CI Upper CI

Mean 1 1.264 1.100 1.429
2 1.271 1.106 1.435
4 1.257 1.094 1.421

Std Dev 1 0.636 0.539 0.779
2 0.636 0.539 0.775
4 0.634 0.537 0.773

Table B.3: 95% CI on Log Packets In by Traffic Pattern
Estimator Pattern Estimate Lower CI Upper CI

Mean 1 3.859 3.508 4.210
2 3.856 3.504 4.208
4 3.856 3.504 4.208

Std Dev 1 1.359 1.152 1.658
2 1.361 1.153 1.660
4 1.361 1.154 1.660

78

Table B.4: 95% CI on Log Packets Out by Traffic Pattern
Estimator Pattern Estimate Lower CI Upper CI

Mean 1 3.259 2.937 3.581
2 3.266 2.945 3.586
4 3.249 2.923 3.575

Std Dev 1 1.247 1.057 1.521
2 1.241 1.052 1.513
4 1.263 1.071 1.540

B.2 Effects Tests for Response Variables

Table B.5: Effects Test for Log Client Discoveries (α = 0.05)
Source Nparm DF SS F Ratio Prob > F

Method 1 1 252.170 760001.357 4.53E-296
Time Given*Method 4 4 1.146 863.325 3.86E-107

Time Given 4 4 1.146 863.325 3.86E-107
Scenario*Method 1 1 0.006 18.945 2.39E-005

Scenario 1 1 0.006 18.946 2.39E-005
Time Given*Scenario 4 4 0.003 2.517 4.35E-002

Time Given*Scenario*Method 4 4 0.003 2.517 4.35E-002

Table B.6: Effects Test for Log Server Discoveries (α = 0.05)
Source Nparm DF SS F Ratio Prob > F

Time Given 4 4 32.334 23486.751 2.23E-220
Time Given*Method 4 4 28.895 20988.414 1.77E-216

Method 1 1 3.829 11124.780 8.56E-150
Scenario 1 1 2.188 6357.945 1.01E-130

Scenario*Method 1 1 1.860 5405.586 3.12E-125
Time Given*Scenario 4 4 1.106 803.682 9.08E-105

Time Given*Scenario*Method 4 4 1.157 840.224 3.06E-010

79

Table B.7: Effects Test for Log Packets In (α = 0.05)
Source Nparm DF SS F Ratio Prob > F

Method 1 1 145.536 1438839.450 0
Scenario 1 1 65.585 648407.756 1.49E-290

Scenario*Method 1 1 60.915 602238.296 5.47E-288
Time Given 4 4 48.103 118892.467 1.12E-276

Time Given*Method 4 4 4.617 11410.679 2.32E-195
Time Given*Scenario 4 4 1.382 3415.676 9.68E-154

Time Given*Scenario*Method 4 4 1.404 3469.597 2.80E-154

Table B.8: Effects Test for Log Packets Out (α = 0.05)
Source Nparm DF SS F Ratio Prob > F

Method 1 1 248.825 385675.206 1.65E-272
Time Given 4 4 23.336 9042.411 2.60E-187

Time Given*Method 4 4 3.065 1187.500 8.66E-118
Time Given*Scenario 4 4 0.738 285.820 9.53E-072

Time Given*Scenario*Method 4 4 0.600 232.681 1.42E-065
Scenario 1 1 0.0352 54.498 8.03E-012

Scenario*Method 1 1 0.001 1.436 2.33E-001

B.3 Effects Tests for Derived Metrics

Table B.9: Effects Test for Log Total Discoveries (α = 0.05)
Source Nparm DF SS F Ratio Prob > F

Method 1 1 75.623 185190.932 4.89E-247
Time Given 4 4 41.490 25401.171 4.26E-223

Time Given*Method 4 4 21.561 13199.974 2.09E-200
Scenario 1 1 2.246 5499.876 8.14E-126

Scenario*Method 1 1 1.808 4427.709 1.62E-118
Time Given*Scenario 4 4 1.141 698.388 3.86E-100

Time Given*Scenario*Method 4 4 1.123 687.270 1.30E-099

80

Table B.10: Effects Test for Log Overhead Packets In (α = 0.05)
Source Nparm DF SS F Ratio Prob > F

Method 1 1 393.702 5861006.280 0
Scenario 1 1 63.229 941280.880 1.68E-303

Scenario*Method 1 1 63.229 941280.880 1.68E-303
Time Given 4 4 6.020 22403.433 9.67E-219

Time Given*Method 4 4 6.017 22403.433 9.67E-219
Time Given*Scenario 4 4 1.393 5183.557 4.29E-168

Time Given*Scenario*Method 4 4 1.393 5183.557 4.29E-168

Table B.11: Effects Test for Log Total Network Overhead (α = 0.05)
Source Nparm DF SS F Ratio Prob > F

Method 1 1 268.191 415453.623 4.30E-275
Time Given 4 4 24.471 9477.083 6.18E-189

Time Given*Method 4 4 3.479 1347.445 4.83E-122
Scenario 1 1 0.610 944.206 5.23E-069

Time Given*Scenario 4 4 0.626 242.331 8.85E-067
Time Given*Scenario*Method 4 4 0.505 195.732 1.59E-060

Scenario*Method 1 1 0.389 602.493 3.98E-056

B.4 Comparison by Method at Time=40

Table B.12: 95% CI on Log Server Discoveries by Method (Time=40)
Estimator Method Estimate Lower CI Upper CI

Mean Active 2.101 2.097 2.104
Passive 1.431 1.431 1.431

Std Dev Active 0.007 0.006 0.011
Passive 0 0 0

Table B.13: 95% CI on Log Client Discoveries by Method (Time=40)
Estimator Method Estimate Lower CI Upper CI

Mean Active 0 0 0
Passive 2.507 2.507 2.507

Std Dev Active 0 0 0
Passive 0 0 0

81

Table B.14: 95% CI on Log Total Discoveries by Method (Time=40)
Estimator Method Estimate Lower CI Upper CI

Mean Active 2.101 2.097 2.104
Passive 2.542 2.542 2.542

Std Dev Active 0.007 0.006 0.011
Passive 0 0 0

Table B.15: 95% CI on Log Overhead Packets In by Method (Time=40)
Estimator Method Estimate Lower CI Upper CI

Mean Active 3.434 2.811 4.057
Passive 0 0 0

Std Dev Active 1.252 0.940 1.877
Passive 0 0 0

Table B.16: 95% CI on Log Overhead Packets Out by Method (Time=40)
Estimator Method Estimate Lower CI Upper CI

Mean Active 5.067 4.952 5.182
Passive 2.299 2.293 2.305

Std Dev Active 0.231 0.173 0.346
Passive 0.012 0.009 0.019

Table B.17: 95% CI on Log Total Network Overhead by Method (Time=40)
Estimator Method Estimate Lower CI Upper CI

Mean Active 5.175 5.115 5.234
Passive 2.299 2.293 2.305

Std Dev Active 0.120 0.090 0.180
Passive 0.012 0.009 0.019

82

Appendix C. Source Code and Configuration Files

The smaller, simpler source code files are listed here. The larger configuration and

source code files and multi-file projects are available separately. See Appendix D for

obtaining these files.

83

C.1 Source Code

C.1.1 uncollect.pl.

#!/usr/bin/perl -w

my ($ip, $eth, $sports, $cports, $uports, $item);

my @ports;

$ip="";
$eth="";
$sports="";
$cports="";
$uports="";
eat the first line
$item=<STDIN>;
$item="";

while (<STDIN>) {
next if /mapped items/;
next if /received/;
next if /Done/;

($ip, $eth, $sports, $cports, $uports)
= m/^(.*) (.*) S\((.*)\) C\((.*)\) U\((.*)\)$/ ;

if (length($sports)>0) {
@ports = split (" ", $sports);
foreach $item (@ports) {

print $ip.":serv:".$item."\n";
}

}

if (length ($cports) >0) {
@ports = split (" ", $cports);
foreach $item (@ports) {

print $ip.":clnt:".$item."\n";
}

}

if (length($uports)>0) {
@ports = split (" ", $uports);
foreach $item (@ports) {

print $ip.":uclnt:".$item."\n";
print $ip.":userv:".$item."\n";

}
}

}

84

C.1.2 ungrep.pl.

#!/usr/bin/perl -w

normalize the output of the nmap ’grep’ format log for input to matchem
only server-side ports are seen by nmap so no client-side processing
my ($ip, $eth, $sports, $cports, $uports, $item);

my @ports;

$ip="";
$status="";
$sports="";
$port="";
$proto="";

eat the first line
$item=<STDIN>;
$item="";
$dummy="";

while (<STDIN>) {
next if /^\#/;

($ip, $sports, $dummy) =
m/^Host:\s+(.*)\s+\(\)\s+Ports:\s+(.*)(\s+Ignore.*|\#.*)$/;

if ($sports) {
foreach $j (split (/,\s+/, $sports)) {

($port, $status, $proto, $dummy) = split (’\/’, $j);
if ($status =~ /open/i) {
if ($proto =~ /UDP/i) {

print $ip.":uclnt:".$port."\n";
print $ip.":userv:".$port."\n";

}
elsif ($proto =~ /TCP/i) {

print $ip.":serv:".$port."\n";
}

}
}

}
}

C.1.3 matchem.java. The source code for matchem is provided on a data
CD-ROM and can be found under the matchem directory at filename matchem.java.

C.1.4 syntraf. The source code for syntraf is provided on a data CD-ROM
and can be found under the syntraf directory.

85

C.1.5 lanmap and collector. The project files and source code for lanmap
and collector are provided on a data CD-ROM and can be found under the lanmap
directory.

C.1.6 nmap modifications. The differential file describing this investiga-
tion’s modifications to nmap is provided on a data CD-ROM and can be found under
the nmap directory at filename nmap-timer.diff.

C.2 Configuration Files

C.2.1 honeyd configuration. The honeyd configuration files for the “Nor-
mal” and “Firewall” scenario is provided on a data CD-ROM and can be found
under the configs directory. scenario1.travis.cfg provides the Firewall scenario and
scenario2.travis.cfg provides the Normal scenario.

C.2.2 syntraf configuration. The syntraf configuration file used throughout
the experiments is provided on a data CD-ROM and can be found under the configs
directory, at filename travis.scn.

C.3 Experiment System

Figure C.1 describes the experimental cycle.

power up all systems (switch, four computers)
login to the collector (the only system with user console)
ensure switch SPAN is set up correctly

for active, sniffer/collector needs SPAN emitter
for passive, mapper needs SPAN emitter)

remotely login to the other three systems
ensure each systems secondary network adapter is enabled
for a passive test:

login a second time to mapper
on the honeynet: ./honeyd -i eth0 10.0.0.0/8 -f firewall.scenario.cfg
on the collector: ./collector > collector.log
on the mapper: tcpdump -i eth0 ip or arp -w sniffer.tcpdump
on the second mapper login: ./lanmap -i eth0 -s <address of collector> > lanmap.log
on the generator: java syntraf -t <time> -f traffic.scn

for an active test:
login a second time to mapper
on the honeynet: ./honeyd -i eth0 10.0.0.0/8 -f firewall.scenario.cfg
on the sniffer: tcpdump -i eth0 ip or arp -w snifferlog.tcpdump
on the mapper: tcpdump -i eth0 ip or arp -w nmaplog.tcpdump
on the generator: java syntraf -t <time> -f traffic.scn
immediately on the second mapper login:

nmap -i eth0 ’network addresses’ -n -oG nmaplog.grep

Figure C.1: Experiment System Configuration

86

Appendix D. Availability of Source Code and Configuration Files

Availability of source code and projet files for lanmap, collector, and syntraf ; dif-

ferential files describing the modifications to nmap; and the configuration files for

honeyd and syntraf are not included as part of this document.

Interested parties should direct their inquiries to:

Dr. Richard Raines

AFIT/ENG 2950 Hobson Way

Wright-Patterson AFB, OH

45433-7765

87

Bibliography

1. “C-language hash table implementation source code.” Author unattributed.

2. “freshmeat.net: Statistics and Top 20.” http://freshmeat.net/stats/; ac-
cessed February 5, 2004.

3. “How does Traceroute work?.” http://www.tek-tips.com/gfaqs.cfm/lev2/

5/lev3/60/pid/581/fid/381; accessed February 11, 2004.

4. “Commanders’ NOTAM 00-5: One Air Force, One Network,” September 2000.
http://www.issues.af.mil/notams/notam00-5.html; accessed January 16,
2004.

5. “Debian GNU/Linux 3.0 Released,” Debian News (2002). http://www.debian.
org/News/2002/; accessed January 24, 2004.

6. Chariot Product Documentation, 2003. http://www.ixiacom.com/products/

performance applications/pa display.php?skey=pa ixchariot; accessed
February 4, 2004.

7. “ettercap Documentation,” 2003. http://ettercap.sourceforge.net/; ac-
cessed July 15, 2003.

8. “The Honeynet Project Briefing,” (April 2003). http://www.honeynet.org/

speaking/honeynet project-2.0.4.ppt.zip; accessed April 30, 2003.

9. Merriam-Webster Dictionary, Online Edition. 2003. http://www.m-w.com/;
accessed July 15, 2003.

10. “NetFlow Overview Briefing,” February 2003. http://www.cisco.com/

application/vnd.ms-powerpoint/en/us/guest/tech/tk362/c1482/

ccmigration 09186a0080182b50.ppt; accessed July 15, 2003.

11. “NetSpec Manual,” 2003. http://www.ittc.ukans.edu/netspec/docs/

NetSpecUser.pdf; accessed September 22, 2003.

12. “NISTNet Documentation,” 2003. http://www-x.antd.nist.gov/nistnet/

index.html; accessed September 22, 2003.

13. “WhatsUp Gold,” 2004. http://www.ipswitch.com/products/whatsup/

index.html; accessed February 4, 2004.

14. Andel, T. R. “(U//FOUO) Traffic Generator.” E-Mail between Capt Todd Angel
and Dr Rick Raines, September 2003.

15. Arkin, O. and Yarochkin, F. “Xprobe v2.0: A “Fuzzy” Approach to Re-
mote Active Operating System Fingerprinting,” (August 2002). http://www.

sys-security.com/archive/papers/Xprobe2.pdf; accessed July 15, 2003.

88

16. Beddoe, M. and Abad, C. “The Siphon Project: The Passive Network Mapping
Tool,” (2000). http://siphon.datanerds.net/; accessed July 15, 2003.

17. Branigan, S., Burch, H., Cheswick, B., and Wojcik, F. “What Can You Do with
Traceroute?,” IEEE Internet Computing Online (2001). http://www.computer.
org/internet/v5n5/; accessed June 26, 2003.

18. Brownlee, N., Claffy, K. C., Murray, M., and Nemeth, E. “Methodology for
Passive Analysis of a University Internet Link,” (2001). http://www.caida.

org/outreach/papers/2001/MethodAnalyseLink/passive.pdf; accessed July
15, 2003.

19. Chandran, R. and Pakala, S. “Simulating Networks with Honeyd,” (December
2003). http://www.paladion.net; accessed January 24, 2004.

20. Cisco Systems, Inc. Configuring the Catalyst Switch Port Analyzer (SPAN) Fea-
ture, 2003. http://www.cisco.com/warp/public/473/41.pdf; accessed July
15, 2003.

21. Claffy, K. C., Braun, H.-W., and Polyzos, G. C. “Application of sampling
methodologies to wide-area network traffic characterization,” (1993). http:

//www.caida.org/outreach/papers/1993/asmw/sigcomm.sampling.pdf; ac-
cessed July 15, 2003.

22. Claffy, K. C., Braun, H.-W., and Polyzos, G. C. “A parameterizable methodology
for Internet traffic flow profiling,” (1995). http://www.caida.org/outreach/

papers/1995/pmi/JSAC-flows.pdf; accessed July 15, 2003.

23. Cohen, F. “Managing Network Security: What’s Happening Out There,” Net-
work Security Magazine, 8–11 (August 1999).

24. Department of the Air Force. Concept of Operations for Air Force Information
Enterprise, DRAFT , September 2000.

25. Department of the Air Force. Air Force Instruction 33-112, Computer Systems
Management , February 2001.

26. Department of the Air Force. Air Force Instruction 33-115v1, Network Manage-
ment , November 2002.

27. Diversified Data Resources, Inc. ACE-SNMP: An Introductory Overview of
SNMP , 1999. http://alpha400.ee.unsw.edu.au/∼tele9303/notes/DDRI.
pdf; accessed July 15, 2003.

28. Drobisz, J. and Christensen, K. J. “Adaptive Sampling Methods to Deter-
mine Network Traffic Statistics including the Hurst Parameter,” (1998). http:

//dlib.computer.org/conferen/lcn/8810/pdf/88100238.pdf; accessed July
15, 2003.

89

29. Giovanni, C. “Passive Mapping: An Offensive Use of IDS,” (March 2000).
http://packetstormsecurity.nl/papers/IDS/OffensiveUseofIDS.pdf; ac-
cessed June 26, 2003.

30. Giovanni, C. “Passive Mapping: The Importance of Stimuli,” (June 2000). http:
//packetstormsecurity.nl/papers/IDS/PassiveMappingviaStimulus.pdf;
accessed June 26, 2003.

31. Hewlett-Packard. Managing Your Network with HP OpenView Network Node
Manager , 2003.

32. Horstman, C. S. and Cornell, G. Core Java 2, Volume II - Advanced Features .
Palo Alto, CA: Sun Microsystems Press, 2000.

33. Huffaker, B., Plummer, D., Moore, D., and Claffy, K. C. “Topology discovery
by active probing,” (2002). http://www.caida.org/outreach/papers/2002/

SkitterOverview/skitter overview.pdf; accessed July 15, 2003.

34. Jacobson, V., Leres, C., and McCanne, S. pcap Manual Page, 2003.

35. Jacobson, V., Leres, C., and McCanne, S., “tcpdump Manual Page,” 2003. http:
//www.tcpdump.org/tcpdump man.html; accessed January 21, 2004.

36. Jain, R. The Art of Computer Systems Performance Analysis . New York, New
York: John Wiley and Sons, 1991.

37. Kent, K. “Evaluating Network Intrusion Detection Signatures, Part Three,”
(December 2002). http://www.securityfocus.com/infocus/1651; accessed
January 24, 2004.

38. MKS Software. snmpwalk Manual Page, 2003. http://www.mkssoftware.com/
docs/man1/snmpwalk.1.asp; accessed July 15, 2003.

39. Nazario, J. “Passive System Fingerprinting using Network Client Applications,”
(January 2001). http://secinf.net/uplarticle/1/passive.pdf; accessed
July 15, 2003.

40. Plummer, D. C., “Ethernet Address Resolution Protocol, RFC 826,” 1982. http:
//www.faqs.org/rfcs/rfc826.html; accessed January 24, 2004.

41. Postel, J. B., “Internet Control Message Protocol, RFC 792,” September 1981.
http://www.faqs.org/rfcs/rfc792.html; accessed February 10, 2004.

42. Postel, J. B., “Internet Protocol, RFC 791,” September 1981. http://www.

faqs.org/rfcs/rfc791.html; accessed February 10, 2004.

43. Postel, J. B., “Transmission Control Protocol, RFC 793,” September 1981. http:
//www.faqs.org/rfcs/rfc793.html; accessed February 10, 2004.

44. Poulsen, K. “Matrix Sequel has Hacker Cred,” Security Focus (May 2003).
http://www.securityfocus.com/news/4831; accessed January 24, 2004.

90

45. Reynolds, J. and Postel, J., “Assigned Numbers, RFC 1700,” October 1994.
http://www.faqs.org/rfcs/rfc1700.html; accessed February 11, 2004.

46. Rossey, L., “LARIAT Overview Briefing,” September 2003. PowerPoint Slides.

47. Scambray, J., McClure, S., and Kurtz, G. Hacking Exposed, 2nd Edition.
Berkely, CA: Osborne/McGraw-Hill, 2001.

48. Shargorodsky, S. “Russian security said to penetrate Internet,” Associated
Press (February 2000). http://www.da.wvu.edu/archives/002202/news/

world nation.html; accessed July 15, 2003.

49. Smith, J., “C-language linked list implementation source code,” 2000. http:

//slicer69.tripod.com/code/index.html; accessed September 21, 2003.

50. Spitzner, L. Honeypots: Tracking Hackers . Boston, Massachusetts 02116:
Addison-Wesley, 2003.

51. Stephens, R. W. Unix Network Programming, Volume 1, 2nd Edition. Upper
Saddle River, NJ: Prentice Hall, 1998.

52. Undy, M., Bing, M., and Turner, A., “tcpreplay Home Page,” 2003. http:

//tcpreplay.sourceforge.net; accessed January 21, 2004.

53. Vision, M. “Passive Host Fingerprinting,” (February 2001). http://www.

whitehats.com/library/passive/index.html; accessed July 15, 2003.

54. Wachowski, A., Wachowski, L., and Silver, J., “The Matrix Reloaded.” Motion
Picture / DVD, 2003. Performers Keanu Reeves, Laurence Fishburne, Carrie-
Ann Moss.

55. Yarochkin, F. “Network Mapping Thesis (Interview).” E-Mail between MSgt
J.B. Kuntzelman and Fyodor Yarochkin, September 2003.

56. Yarochkin, F. nmap Documentation. Insecure.org, 2003. http://www.

insecure.org/nmap/nmap documentation.html; accessed July 15, 2003.

57. Zalewski, M. and Stearns, W. p0f Documentation, 2003. http://lcamtuf.

coredump.cx/p0f/README; accessed July 15, 2003.

91

 REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

23-03-2004
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

March 2003 – March 2004
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE
COMPARATIVE ANALYSIS OF ACTIVE AND PASSIVE
MAPPING TECHNIQUES IN AN INTERNET-BASED
LOCAL AREA NETWORK

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Kuntzelman, James B., MSgt, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/04-09

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Neal Ziring
 TD/C4 NSA
 Fort George G. Meade, MD 20755-6000 11. SPONSOR/MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

1
 Network mapping technologies allow quick and easy discovery of computer systems throughout a network. Active mapping
methods, such as using nmap, capitalize on the standard stimulus-response of network systems to probe target systems. In doing
so, they create extra traffic on the network, both for the initial probe and for the target system's response. Passive mapping methods
work opportunistically, listening for network traffic as it transits the system. As such, passive methods generate minimal network
traffic overhead. Active methods are still standard methods for network information gathering; passive techniques are not normally
used due to the possibility of missing important information as it passes by the sensor. Configuring the network for passive network

apping also involves more network management.

4. ABSTRACT

m
 This research explores the implementation of a prototype passive network mapping system, lanmap, designed for use within an
Internet Protocol-based local area network. Network traffic is generated by a synthetic traffic generation suite using honeyd and
yntraf, a custom Java program to interact with honeyd. lanmap is tested against nmap to compare the two techniques. s

 Experimental results show that lanmap is quite effective, discovering an average of 76.1% of all configured services (server- and
client-side) whereas nmap only found 27.6% of all configured services. Conversely, lanmap discovered 19.9% of the server services
while nmap discovered 92.7% of the configured server-side services. lanmap discovered 100% of all client-side service consumers
while nmap found none. lanmap generated an average of 200 packets of network overhead while nmap generated a minimum of

inimum 8,600 packets on average--up to 155,000 packets at its maximum average value. m
 The results show that given the constraints of the test bed, passive network mapping is a viable alternative to active network
mapping, unless the mapper is looking for unused server-side services.
15. SUBJECT TERMS
COMPUTER NETWORKS, COMMUNICATIONS PROTOCOLS, NETWORK TOPOLOGY

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Dr. Richard A. Raines

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
 OF
 PAGES

103

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4278
(richard.raines@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

